Skip to main content
Log in

Novel branched poly(l-lactide) with poly(glycerol-co-sebacate) core

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A series of biodegradable poly (glycerol-sebacate-l-lactide) (PGSLA) copolymers, with variable PLLA length, were synthesized and characterized. The copolymers comprised PGS backbone chain with a nominal molecular weight of 2,800 g/mol. The length of each PLLA side chain covered the 800–14,000 range, while the length of the PLLA was easily controlled by the feed molar ratio of the l-lactide to the PGS. The structure of the copolymer was studied by nuclear magnetic resonance spectroscopy and gel permeation chromatography. Differential scanning calorimetric measurements and thermal gravimetric analysis had been performed to indicate the glass transition temperature (T g), melting point (T m), and the degree of crystallinity (χ c). It was also found that the onset decomposition temperature (T d) of the copolymers was lower than those of the linear polylactide (LPLLA). After solution casting and solvent evaporation, porous structures were found in the copolymer films by scanning electron microscope (SEM). Water contact angle results showed that the hydrophilicity of the copolymers was much higher than that of linear PLLA. In vivo, PGSLA copolymer demonstrated a favorable tissue response profile compared to PGS/LPLLA blend. There was also significantly less inflammation and fibrosis during degradation. PGSLA might therefore serve as an excellent candidate material for medical applications, given its minimal in vivo tissue response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Vert M (1989) Angew Makromol Chem 166/167:155

    Google Scholar 

  2. Bendix D (1998) Polym Degrad Stab 59:129

    Article  CAS  Google Scholar 

  3. Edlund U, Albertsson AC (2002) Adv Polym Sci 157:67

    Article  CAS  Google Scholar 

  4. Stahelin AC, Weiler A, Rufenacht H et al (1997) Arthroscopy 13:238

    Article  CAS  Google Scholar 

  5. Drumright RE, Gruber PR, Henton DE (2000) Adv Mater 12:1841

    Article  CAS  Google Scholar 

  6. Kricheldorf HR (2001) Chemosphere 43:49

    Article  CAS  Google Scholar 

  7. Okada M (2002) Prog Polym Sci 27:87

    Article  CAS  Google Scholar 

  8. Albertsson AC, Varma IK (2002) Adv Polym Sci 157:1

    Article  CAS  Google Scholar 

  9. Kim ES, Kim BC, Kim SH (2004) J Polym Sci B 42:939

    Article  CAS  Google Scholar 

  10. Korhonen H, Helminen A, Seppälä J (2001) J V Polymer 42:7541

    Article  CAS  Google Scholar 

  11. Biela T, Duda A, Penczek S et al (2002) J Polym Sci A 40:2884

    Article  CAS  Google Scholar 

  12. Zhao YL, Cai Q, Jiang J et al (2002) Polymer 43:5819

    Article  CAS  Google Scholar 

  13. Kim SH, Han YK, Kim YH et al (1992) Makromol Chem 193:1623

    Article  CAS  Google Scholar 

  14. Barakat I, Dubois P, Jérôme R et al (1994) Polym Sci A 32:2099

    Article  CAS  Google Scholar 

  15. Breitenbach A, Kissel T (1998) Polymer 39:3261

    Article  CAS  Google Scholar 

  16. Eguiburu JL, Fernandez-Berridi MJ, San Roman J (1996) Polymer 37:3615

    Article  CAS  Google Scholar 

  17. Jha S, Dutta S, Bowden NB (2004) Macromolecules 37:4365

    Article  CAS  Google Scholar 

  18. Nouvel C, Frochot C, Sadtler V et al (2004) Macromolecules 37:4981

    Article  CAS  Google Scholar 

  19. Ohya Y, Maruhashi S, Ouchi T (1998) Macromolecules 31:4662

    Article  CAS  Google Scholar 

  20. Helminen A, Korhonen H, Seppälä J (2001) Polymer 42:3345

    Article  CAS  Google Scholar 

  21. Storey RF, Warren SC, Allison CJ et al (1997) Polymer 26:6295

    Article  Google Scholar 

  22. Sun ZJ, Wu L, Huang W et al (2008) Mater Sci Eng C 29:178

    Article  Google Scholar 

  23. Kim SH, Han Y-K, Ahn K-D, Kim YH, Chang T (1993) Macromol Chem 194:3229

    Article  CAS  Google Scholar 

  24. Lee S-H, Kim SH, Han Y-K, Kim YH (2001) J Polym Sci A 39:973

    Article  CAS  Google Scholar 

  25. Dong CM, Qiu KY, Gu ZW, Feng XD (2001) Macromolecules 34:4691

    Article  CAS  Google Scholar 

  26. Dong CM, Qiu KY, Gu ZW, Feng XD (2002) J Polym Sci A 40:409

    Article  CAS  Google Scholar 

  27. Choi YK, Bae YH, Kim SW (1998) Macromolecules 31:8766

    Article  CAS  Google Scholar 

  28. Korhonen H, Helminen A, Seppälä JV (2001) Polymer 42:7541

    Article  CAS  Google Scholar 

  29. Finne A, Albertsson A-C (2002) Biomacromolecules 3:684

    Article  CAS  Google Scholar 

  30. Biela T, Duda A, Rode K, Pasch H (2003) Polymer 44:1851

    Article  CAS  Google Scholar 

  31. Gong FR, Cheng XY, Wang SF et al (2009) Polymer 50:2775

    Article  CAS  Google Scholar 

  32. Zhao YL, Shuai XT, Chen CF, Xi F (2003) Chem Mater 15:2836

    Article  CAS  Google Scholar 

  33. Atthoff B, Trollsås M, Claesson H, Hedrick JL (1999) Macromol Chem Phys 200:1333

    Article  CAS  Google Scholar 

  34. Luo Y, Wang Y, Niu X, Shang J (2008) Eur Polym J 44:1390

    Article  CAS  Google Scholar 

  35. Wang YD, Ameer GA, Sheppard BJ et al (2002) Nat Biotechnol 20:602

    Article  CAS  Google Scholar 

  36. Gao J, Crapo PM, Wang YD (2006) Tissue Eng 12:917

    Article  CAS  Google Scholar 

  37. Kowalski A, Duda A, Penczek S (1998) Macromol Rapid Commun 19:567

    CAS  Google Scholar 

  38. Penczek S, Duda A, Kowalski A et al (2000) Macromol Symp 157:61

    Article  CAS  Google Scholar 

  39. Kowalski A, Duda A, Penczek S (2000) Macromolecules 33:689

    Article  CAS  Google Scholar 

  40. Ioannis A, Atsuyoshi N, Norioki K et al (1995) Polymer 36:2947

    Article  Google Scholar 

  41. Ioannis A, Atsuyoshi N, Eleni P et al (1996) Polymer 37:651

    Article  Google Scholar 

  42. Cohn D, Younes H, Marom G (1987) Polymer 28:2018

    Article  CAS  Google Scholar 

  43. Zhao BH, Zhang J, Wu HY et al (2007) Thin Solid Films 515:3629

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujun Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, S., Yang, L. & Gong, F. Novel branched poly(l-lactide) with poly(glycerol-co-sebacate) core. Polym. Bull. 65, 643–655 (2010). https://doi.org/10.1007/s00289-009-0237-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-009-0237-6

Keywords

Navigation