Skip to main content
Log in

Preparation of water soluble Am–AA–SSS copolymers by inverse microemulsion polymerization

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Inverse microemulsion copolymerization of acrylamide (Am), acrylic acid (AA), and sodium 4-styrenesulfonate (SSS) initiated by redox initiators composed of ammonium peroxodisulphate (APS) and sodium bisulfite, and stabilized by the mixed emulsifier system sorbitan monooleate (Span-80) and polyoxyethylene sorbitan monooleate (Tween 80) were examined as a function of the combination of hydrophilic (Tween 80) and hydrophobic (Span 80) emulsifiers, reaction temperature, AM/AA mass ratio, SSS concentration, and initiator concentration. The physicochemical and thermal properties and the structure of this copolymer were also determined and discussed. The reaction rates for all runs of the experiments exhibited two intervals, which were typical of microemulsion polymerization. The copolymer had only one glass transition temperature of 115.5 °C, indicating a random structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. He GW, Pan QM, Rempel GL (2003) Synthesis of poly(methyl methacrylate) nanosize particles by differential microemulsion polymerization. Macromol Rapid Commun 24:585–588

    Article  CAS  Google Scholar 

  2. Chen J, Zhang ZC (2007) Radiation-induced polymerization of methyl methacrylate in microemulsion with high monomer content. Eur Polym J 43(4):1188–1194

    Article  CAS  Google Scholar 

  3. Lim TH, Tham MP, Liu ZL, Hong L, Guo B (2007) Nano-structured proton exchange membranes molded by polymerizing bi-continuous microemulsion. J Membr Sci 290(1–2):146–152

    Article  CAS  Google Scholar 

  4. Katime I, Arellanoa J, Schulz P (2006) Poly(n-hexyl methacrylate) polymerization in three-component microemulsion stabilized by a cationic surfactant. J Colloid Interface Sci 296:490–495

    Article  CAS  Google Scholar 

  5. Barton J, Capek I (2000) Acrylamide and butyl acrylate polymerization in Winsor IV (w/o) and Winsor I (o/w) microemulsions. Macromolecules 33:5353–5357

    Article  CAS  Google Scholar 

  6. Renteria M, Munoz M, Ochoa JRL, Cesteros C, Katime I (2005) Acrylamide inverse microemulsion polymerization in a paraffinic solvent: Rolling-M-245. J Polym Sci Part A Polym Chem 43:2495–2503

    Article  CAS  Google Scholar 

  7. Candau F, Pabon M, Anquetil JY (1999) Polymerizable microemulsions: some criteria to achieve an optimal formulation. Colloids Surf A Physiochem Eng Aspects 153:47–59

    Article  CAS  Google Scholar 

  8. Barton J, Juranic˘ova V (2000) Polymerization of acrylamide in styrene containing inverse microemulsions: polymerization kinetics and polymer product composition studies. Polym Int 49:1483–1491

    Article  CAS  Google Scholar 

  9. Barton J, Kawamoto S, Fujimoto K, Kawaguchi H, Capek I (2000) Preparation of partly hydrophobized, crosslinked polyacrylamide particles by terpolymerization of acrylamide/N, N-methylenebisacrylamide/styrene in inverse microemulsion. Polym Int 49:358–366

    Article  CAS  Google Scholar 

  10. Sanz FJE, Gomez JRO, Sasia PM, Apodaca ED, Ri’o P (2007) Synthesis of cationic flocculants by the inverse microemulsion copolymerization of acrylamide with 60% 2-acryloxyethyltrimethyl ammonium chloride in the monomer feed. I. Initiation by ammonium persulfate/sodium disulfite redox system. J Appl Polym Sci 103:2826–2836

    Article  CAS  Google Scholar 

  11. Ochoa JR, Sanz FJE, Sasia PM, Garcı’a S, Apodaca ED, Ri’o P (2007) Synthesis of cationic flocculants by the inverse microemulsion copolymerization of acrylamide with 60% 2-acryloxyethyltrimethyl ammonium chloride in the monomer feed. II. Influence of the formulation composition, hydrophilic-lipophilic balance, starting polymerization temperature, and reaction time. J Appl Polym Sci 103:186–197

    Article  CAS  Google Scholar 

  12. Kaneda I, Sogabe A, Nakajima H (2004) Water-swellable polyelectrolyte microgels polymerized in an inverse microemulsion using a nonionic surfactant. J Colloid Interface Sci 275:450–457

    Article  CAS  Google Scholar 

  13. Wan T, Wang L, Yao J, Ma XL, Yin QS, Zang TS (2008) Saline solution absorbency and structure study of poly (AA–AM) water superabsorbent by inverse microemulsion polymerization. Polym Bull 60:431–440

    Article  CAS  Google Scholar 

  14. Lopez RG, Trevino ME, Peralta RD, Cesteros LC, Katime I, Flores J (2000) A kinetic description of the free radical polymerization of vinyl acetate in cationic microemulsions. Macromolecules 33(8):2848–2854

    Article  CAS  Google Scholar 

  15. Paril A, Alb AM, Giz AT, Catalgil GH (2007) Effect of medium pH on the reactivity ratios in acrylamide acrylic acid copolymerization. J Appl Polym Sci 103(2):968–974

    Article  CAS  Google Scholar 

  16. Rintoul I, Wandrey C (2005) Polymerization of ionic monomers in polar solvents: kinetics and mechanism of the free radical copolymerization of acrylamide/acrylic acid. Polymer 46:4525–4532

    CAS  Google Scholar 

  17. Nowakowska M, Zapotoczny SZ (1996) Polymeric photosensitizers. 3. Determination of the copolymerization parameters for N-vinylcarbazole and sodium styrene-sulfonate. Polymer 37:5275–5282

    Article  CAS  Google Scholar 

  18. Dubinsky SD, Grader GS, Shter GE, Silverstein M (2004) Thermal degradation of poly(acrylic acid) containing copper nitrate. Polym Degrad Stab 86:171–178

    Article  CAS  Google Scholar 

  19. Bozkurt A, Meyer WH, Gutmann J, Wegner G (2003) Proton conducting copolymers on the basis of vinylphosphonic acid and 4-vinylimidazole. Solid State Ionics 164:169–176

    Article  CAS  Google Scholar 

  20. McNeill IC, Ahmed S, Memetea L (1995) Thermal degradation of vinyl acetate-methacrylic acid copolymer and the homopolymers. II. Thermal analysis studies. Polym Degrad Stab 48(1):89–97

    Article  CAS  Google Scholar 

  21. Lazzari M, Kitayama T, He S, Hatada K, Chiantore O (1997) The effect of stereoregularity on the thermal behavior of poly(methacrylic acid)s: I. Thermal analysis studies. Polym Bull 39(1):85–91

    Article  CAS  Google Scholar 

  22. Lazzari M, Kitayama T, Hatada K, Chiantore O (1998) Effect of stereoregularity on the thermal behavior of poly(methacrylic acid)s. 2. Decomposition at low temperatures. Macromolecules 31(23):8075–8082

    Article  CAS  Google Scholar 

  23. Xue TJ, Wilkie CA (1997) Thermal degradation of poly(styrene-g-acrylonitrile). Polym Degrad Stab 56:109–113

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of China Postdoctoral Science Foundation (No. 20070421140).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, T., Zang, T., Wang, Y. et al. Preparation of water soluble Am–AA–SSS copolymers by inverse microemulsion polymerization. Polym. Bull. 65, 565–576 (2010). https://doi.org/10.1007/s00289-009-0234-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-009-0234-9

Keywords

Navigation