Skip to main content
Log in

Supermolecular structure of wood/polypropylene composites: I. The influence of processing parameters and chemical treatment of the filler

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Wide-angle X-ray scattering (WAXS) and scanning electron microscopy (SEM) were used to investigate the effect of chemical modifications of wood as well as processing parameters on the supermolecular structure and morphology of wood/polypropylene (PP) composites. The surface of the filler was modified to enhance the adhesion between hydrophilic cellulose and hydrophobic polymer. Wood modification was performed by esterification with anhydrides (maleic, propionic, phthalic, crotonic and succinic) and by physical treatment with NaOH. The composites for structural characterization were prepared by the compression moulding method and injection technique. A new design of the compression mould, which ensured the wood pulling, was proposed. It was found that the polymorphs of PP matrix developed due to melt-shearing strongly depended on the pulling temperature as well as on the type chemical modification of wood. The modification of wood caused a significant decrease in the ability to generate the hexagonal phase of PP. Moreover, at a higher temperature of the mould, the amount of hexagonal phase of PP matrix slightly decreases. These investigations are very significant because characterize influence of real parameters processing as well as surface modification of filler on structure of composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nunez AJ, Sturm PC, Kenny JM, Aranguren MJ, Marconich NE, Reboredo MM (2003) Mechanical characterization of polypropylene-woodflour composites. Appl Polym Sci 88:1420–1428

    Article  CAS  Google Scholar 

  2. Bledzki AK, Letman M, Viksne A, Rence L (2005) A comparison of compounding processes and wood type for wood fibre—PP composites. Composites A 36:789−797

    Article  Google Scholar 

  3. Zafeiropoulos NE, Williams DR, Baillie CA, Matthews FL (2002) Engineering and characterisation of the interface in flax fibre/polypropylene composite materials. Part I. Development and investigation of surface treatments. Composites A 33:1083–1093

    Article  Google Scholar 

  4. Harper D, Wolcott M (2004) Interaction between coupling agent and lubricants in wood-polypropylene composites. Composites A 35:385–394

    Article  Google Scholar 

  5. Abdelmouleh M, Boufi S, Belgacem MN, Dufresne A (2007) Short natural-fibre reinforced polyethylene and natural rubber composites: effect of silane coupling agents and fibres loading. Compos Sci Technol 67:1627–1639

    Article  CAS  Google Scholar 

  6. Borysiak S, Paukszta D, Helwig M (2006) Flammability of wood-polypropylene composites. Polym Degrad Stab 91:3339–3343

    Article  CAS  Google Scholar 

  7. Kuruvilla J, Sabu T, Pavithran C (1996) Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites. Polymer 37:5139–5149

    Article  Google Scholar 

  8. Hill CAS (2006) Wood modification: chemical, thermal and other processes. Wiley, New York

    Book  Google Scholar 

  9. Mahlberg R, Paajanen L, Nurmi A, Kivisto A, Koskela K, Rowell RM (2001) Effect of chemical modification of wood on the mechanical and adhesion properties of wood fiber/polypropylene fiber and polypropylene/veneer composites. Holz Roh-Werkst 59:319–326

    Article  CAS  Google Scholar 

  10. Balasuriya PW, Ye L, Mai YW, Wu J (2002) Mechanical properties of wood flake-polyethylene composites. II. Interface modification. J Appl Polym Sci 83:2505–2521

    Article  CAS  Google Scholar 

  11. Albano C, Ichazo M, Gonzalez J, Delgado M, Poleo R (2001) Effects of filler treatments on the mechanical and morphological behavior of PP+wood flour and PP+sisal fiber. Mater Res Innov 4:284–293

    Article  CAS  Google Scholar 

  12. Ellis WD, O’Dell JL (1999) Wood-polymer composites made with acrylic monomers, isocyanate, and maleic anhydride. J Appl Polym Sci 73:2493–2505

    Article  CAS  Google Scholar 

  13. Joly C, Kofman M, Gauthier R (1996) Polypropylene/cellulosic fiber composites: chemical treatment of the cellulose assuming compatibilization between the two materials. J Macromol Sci Pure Appl Chem 12:1981–1996

    Google Scholar 

  14. Wu J, Yu D, Chan CM, Kim J, Mai YW (2000) Effect of fiber pretreatment condition on the interfacial strength and mechanical properties of wood fiber/PP composites. J Appl Polym Sci 76:1000–1010

    Article  CAS  Google Scholar 

  15. Kazayawoko M, Balatinecz JJ, Matuana LM (1999) Surface modification and adhesion mechanisms in woodfiber-polypropylene composites. J Mater Sci 34:6189–6199

    Article  CAS  Google Scholar 

  16. Keith HD, Padden FJ (1959) Evidence for a second crystal form of polypropylene. J Appl Phys 30:1485–1487

    Article  CAS  Google Scholar 

  17. Natta G, Corradini P (1960) Structure of properties of isotactic polypropylene. Nuovo Cimento 15:40–51

    Article  CAS  Google Scholar 

  18. Leugering HJ, Kirsch G (1973) Effect of crystallization from oriented melts on crystal structure of isotactic polypropylene. Angew Makromol Chem 33:17–23

    Article  CAS  Google Scholar 

  19. Janeschitz-Kriegl H, Ratajski E, Wippel H (1999) The physics of athermal nuclei in polymer crystallization. Colloid Polym Sci 277:217–226

    Article  CAS  Google Scholar 

  20. Kumaraswamy G, Kornfield JA, Yeh F, Hsiao B (2002) Shear-enhanced crystallization in isotactic polypropylene. 3. Evidence for a kinetic pathway to nucleation. Macromolecules 35:1762–1769

    Article  CAS  Google Scholar 

  21. Koscher E, Fulchiron R (2002) Influence of shear on polypropylene crystallization: morphology development and kinetics. Polymer 43:6931–6942

    Article  CAS  Google Scholar 

  22. Huo H, Meng Y, Li H, Jiang S, An L (2004) Influence of shear on polypropylene crystallization kinetics. Eur Phys J 15:167–175

    CAS  Google Scholar 

  23. Somani RH, Yang L, Hsiao BS, Fruitwala H (2003) Nature of shear-induced primary nuclei in iPP melt. J Macromol Sci 42:515–531

    Article  Google Scholar 

  24. Bashir GC, Odell JA, Keller A (1986) Stiff and strong polyethylene with shish kebab morphology by continuous melt extrusion. J Mater Sci 21:3993–4002

    Article  CAS  Google Scholar 

  25. Trotignon JP, Verdu J (1990) Effect of the holding pressure on the skin-core morphology of injection-molded polypropylene parts. J Appl Polym Sci 39:1215–1217

    Article  CAS  Google Scholar 

  26. Kalay G, Bevis MJ (1997) Processing and physical property relationships in injection-molded isotactic polypropylene. 2. Morphology and crystallinity. J Polym Sci 35:265–291

    CAS  Google Scholar 

  27. Cai Y, Petermann J, Wittich H (1997) Transcrystallization in fiber-reinforced isotactic polypropylene composites in a temperature gradient. J Appl Polym Sci 65:67–75

    Article  CAS  Google Scholar 

  28. Varga J, Karger-Kocsis J (1996) Rules of supermolecular structure formation in sheared isotactic polypropylene melts. J Polym Sci 34:657–670

    CAS  Google Scholar 

  29. Garbarczyk J, Paukszta D, Borysiak S (2002) Polymorphism of isotactic polypropylene in presence of additives, in blends and in composites. J Macromol Sci Phys 41:1267–1278

    Article  Google Scholar 

  30. Garbarczyk J, Borysiak S (2004) Influence of the pulling of embedded natural fibres on the crystal structure of polypropylene matrix. Int J Polym Mater 53:725–733

    Article  CAS  Google Scholar 

  31. Assouline E, Pohl S, Fulchiron R, Gerard JF, Lustiger A, Wagner HD, Marom G (2000) The kinetics of α and β transcrystallization in fibre-reinforced polypropylene. Polymer 41:7843–7854

    Article  CAS  Google Scholar 

  32. Varga J, Karger-Kocsis J (1994) The difference between transcrystallization and shear-induced cylindritic crystallization in fibre-reinforced polypropylene composites. J Mater Sci Lett 13:1069–1071

    CAS  Google Scholar 

  33. Garbarczyk J, Borysiak S (2004) Cellulose fiber-polypropylene composites. I. The influence of extrusion and injection parameters on the structure of polypropylene matrice. Polimery 49:541–546

    CAS  Google Scholar 

  34. Borysiak S, Garbarczyk J (2003) Applying the WAXS method to estimate the supermolecular structure of cellulose fibres after mercerisation. Fibres Textiles East Eur 11:104–107

    Google Scholar 

  35. Borysiak S (2007) Determination of nucleation ability of wood for non-isothermal crystallisation of polypropylene. J Therm Anal Calorim 88:455–462

    Article  CAS  Google Scholar 

  36. Borysiak S, Doczekalska B (2006) Influence of chemical modification of wood on the crystallisation of polypropylene. Holz Roh-Werkstoff 64:451–454

    Article  CAS  Google Scholar 

  37. Hindeleh AM, Johnson DJ (1971) The resolution of multipeak data in fibre science. J Phys Appl Phys 4:259–263

    CAS  Google Scholar 

  38. Rabiej S (1991) A comparison of two X-ray diffraction procedures for crystallinity determination. Eur Polym J 27:947–954

    Article  CAS  Google Scholar 

  39. Turner-Jones A, Aizlewood JM, Beckett DR (1964) Crystalline forms of isotactic polypropylene. Makromol Chem 75:134–158

    Article  CAS  Google Scholar 

  40. Scudla J, Raab M, Eichhorn KJ, Strachota A (2003) Formation and transformation of hierarchical structure of β-nucleated polypropylene characterized by X-ray diffraction, differential scanning calorimetry and scanning electron microscopy. Polymer 44:4655–4664

    Article  CAS  Google Scholar 

  41. Zhu P, Tung J, Phillips A, Edwards G (2006) Morphological development of oriented isotactic polypropylene in the presence of a nucleating agent. Macromolecules 39:1821–1831

    Article  CAS  Google Scholar 

  42. Farah M, Bretas RES (2004) Characterization of i-PP shear-induced crystallization layers developed in a slit die. J Appl Polym Sci 91:3528–3541

    Article  CAS  Google Scholar 

  43. Chen L, Shen K (2000) Biaxial self-reinforcement of isotactic polypropylene prepared in uniaxial oscillating stress field by injection molding. II. Morphology. J Appl Polym Sci 78:1911–1917

    Article  CAS  Google Scholar 

  44. Varga J (1986) Melting memory effect of the β-modification of polypropylene. J Thermal Anal 31:165–172

    Article  CAS  Google Scholar 

  45. Varga J (1992) Supermolecular structure of isotatic polypropylene. J Mater Sci 27:2557–2579

    Article  CAS  Google Scholar 

  46. Cho K, Saheb DN, Yang H, Kang B, Kim J, Lee SS (2003) Memory effect of locally ordered α-phase in the melting and phase transformation behavior of β-isotactic polypropylene. Polymer 44:4053–4059

    Article  CAS  Google Scholar 

  47. Cho K, Saheb DN, Choi J, Yang H (2002) Real time in situ X-ray diffraction studies on the melting memory effect in the crystallization of β-isotactic polypropylene. Polymer 43:1407–1416

    Article  CAS  Google Scholar 

  48. Lotz B (1998) α and β phases of isotactic polypropylene: a case of growth kinetics phase reentrency in polymer crystallization. Polymer 39:4561–4567

    Article  CAS  Google Scholar 

  49. Lezak E, Bartczak Z, Galeski A (2006) Plastic deformation behavior of β-phase isotactic polypropylene in plane-strain compression at room temperature. Polymer 47:8562–8574

    Article  CAS  Google Scholar 

  50. Garbarczyk J (1985) A study on the mechanism of polymorphic transition β→α in isotactic polypropylene. Makromol Chem 186:2145–2151

    Article  CAS  Google Scholar 

  51. Varga J, Mudra I, Ehrenstein GW (1999) Highly active thermally stable β-nucleating agents for isotactic polypropylene. J Appl Polym Sci 74:2357–2368

    Article  CAS  Google Scholar 

  52. Menyhard A, Varga J, Molnar G (2006) Comparison of different-nucleators for isotactic polypropylene, characterization by DSC and temperature-modulated DSC (TMDSC) measurements. J Therm Anal Calorim 83:625–630

    Article  CAS  Google Scholar 

  53. Xie XL, Fung KL, Li RKY, Tjong SC, Mai YW (2002) Structural and mechanical behavior of polypropylene/ maleated styrene-(ethylene-co-butylene)-styrene/sisal fiber composites prepared by injection molding. J Polym Sci 40:1214–1222

    CAS  Google Scholar 

  54. Wang C, Liu CR (1999) Transcrystallization of polypropylene composites: nucleating ability of fibres. Polymer 40:289–298

    Article  Google Scholar 

  55. Somani RH, Hsiao BS, Nogales A (2001) Structure development during shear flow induced crystallization of i-PP. In situ wide-angle X-ray diffraction study. Macromolecules 34:5902–5909

    Article  CAS  Google Scholar 

  56. Borysiak S, Doczekalska B (2009) The influence of chemical modification of wood on its nucleation ability in polypropylene composites. Polimery 54:41–48

    Google Scholar 

  57. Pompe G, Mader E (2000) Experimental detection of a transcrystalline interphase in glassfibre/polypropylene composites. Compos Sci Technol 60:2159–2167

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Grant of Poznan University of Technology 32-171/09-DS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slawomir Borysiak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borysiak, S. Supermolecular structure of wood/polypropylene composites: I. The influence of processing parameters and chemical treatment of the filler. Polym. Bull. 64, 275–290 (2010). https://doi.org/10.1007/s00289-009-0202-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-009-0202-4

Keywords

Navigation