Skip to main content
Log in

Synthesis and properties of highly branched poly(urethane–imide) via A2 + B3 approach

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A series of highly branched poly(urethane–imide) (HBPUI) were synthesized via A2 + B3 approach using isophorone diisocyante (IPDI), polycarbonatediol (PCDL), 3,3′,4,4′-Benzophen-onetetracarboxylic dianhydride (BTDA), and poly(oxyalkylene) triamine (ATA) as materials. The structure of the products was characterized by FT-IR and 13C-NMR. The molecular weights were characterized by gel permeation chromatograph (GPC). The solution viscosity, thermal, and mechanical properties were measured by rotational rheometer, differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), tensile tests, and dynamic mechanical analysis (DMA), respectively. The HBPUI showed lower viscosity than that of linear poly(urethane–imide) (LPUI), nevertheless T g of HBPUI was higher than that of LPUI. TGA indicated that the thermal degradation of poly(urethane–imide) occurred above 300 °C, which was higher than conventional polyurethane. The tensile strength of HBPUI was obviously improved by increasing the content of BTDA and the molar ratio of [A2]/[B3]. The effects of the content of BTDA and the molar ratio of [A2]/[B3] on the storage modulus of the polymers were also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Park SH, Chung ID, Hartwig A, Kim BK (2007) Hydrolytic stability and physical properties of waterborne polyurethane based on hydrolytically stable polyol. Colloids Surf A Physicochem Eng Aspects 305:126–131. doi:10.1016/j.colsurfa.2007.04.051

    Article  CAS  Google Scholar 

  2. Takeichi T, Ujiie K, Inoue K (2005) High performance poly(urethane–imide) prepared by introducing imide blocks into the polyurethane backbone. Polymer 46:11225–11231. doi:10.1016/j.polymer.2005.09.075

    Article  CAS  Google Scholar 

  3. Fabris HJ (1976) Advance in urethane science and technology. Technomic, Westport, CT

    Google Scholar 

  4. Zuo M, Takeichi T (1999) Preparation and characterization of poly(urethane–imide) films prepared from reactive polyimide and polyurethane prepolymer. Polymer 40:5153–5160. doi:10.1016/S0032-3861(98)00726-5

    Article  CAS  Google Scholar 

  5. Liu J, Ma DZ, Li Z (2002) FTIR studies on the compatibility of hard-soft segments for polyurethane–imide copolymers with different soft segments. Eur Polym J 38:661–665. doi:10.1016/S0014-3057(01)00247-6

    Article  CAS  Google Scholar 

  6. Ghosh MK, Mittal KL (1996) Polyimide: fundamentals and applications. Marcel Dekker, New York

    Google Scholar 

  7. Wilson D, Stenzenberger HD, Hergenrother PM (1990) Polyimides. Blackie, Glasgow

    Google Scholar 

  8. Mishra AK, Chattopadhyay DK, Sreedhar B, Raju KVSN (2006) FT-IR and XPS studies of polyurethane-urea-imide coatings. Prog Org Coat 55:231–243. doi:10.1016/j.porgcoat.2005.11.007

    Article  CAS  Google Scholar 

  9. Liao DC, Heich KH (1994) Synthesis and characterization of bismaleimides derived from polyurethanes. J Polym Sci Part A Polym Chem 32:1665–1672. doi:10.1002/pola.1994.080320908

    Article  CAS  Google Scholar 

  10. Sendijavic A, Sendijavic V, Frisch KC (1990) Synthesis and properties of urethane-modified polyimides. J Polym Sci Part A Polym Chem 28:3603–3615. doi:10.1002/app.1983.070s281126

    Article  Google Scholar 

  11. Wang TL, Huang FJ (1998) Synthesis and properties of poly(amide–imide–urethane) thermoplastic elastomers. Polym Int 46:280–284. doi:10.1002/(SICI)1097-0126(199808)46:4<280:AID-PI992>3.0.CO;2-#

    Article  Google Scholar 

  12. Yeganeh H, Barikani M, Khodabadi NF (2000) Synthesis and properties of novel thermoplastic poly(urethane–imide)s. Eur Polym J 36:2207–2211. doi:10.1016/S0014-3057(99)00284-0

    Article  CAS  Google Scholar 

  13. Lee TJ, Lee DJ, Kim HD (2000) Synthesis and properties of liquid crystalline polyurethane elastomers. J Appl Polym Sci 77:577–585. doi:10.1002/(SICI)1097-4628(20000718)77:3<577:AID-APP13>3.0.CO;2-X

    Article  CAS  Google Scholar 

  14. Radlmann E, Koehler A, Nischk G (1971) Polyurethane elastomers with polyimide or ployamic structure for highly elastic filaments/films. DE2017511

  15. Jeon JY, Tak Tae M (1996) Synthesis and characterization of block copoly(urethane–imide). J Appl Polym Sci 62:763–769. doi:10.1002/(SICI)1097-4628(19961031)62:5<763:AID-APP7>3.0.CO;2-U

    Article  CAS  Google Scholar 

  16. Salah HAA (1991) Synthesis and properties of poly(urethane–urea–imide) block copolymers. Polym J 23:815–821. doi:10.1295/polymj.23.815

    Article  Google Scholar 

  17. Nair RP, Nair CPR, Francis DJ (1999) Effect of imide-oxazolidinone modification on the thermal and mechanical properties of HTPB-polyurethanes. J Appl Polym Sci 71:1731–1738. doi:10.1002/(SICI)1097-4628(19990314)71:11<1731:AID-APP2>3.0.CO;2-M

    Article  CAS  Google Scholar 

  18. Patel HS, Vyas HS (1991) Poly(urethane–imide)s. Eur Polym J 27:93–96. doi:10.1016/0014-3057(91)90132-8

    Article  CAS  Google Scholar 

  19. Patel HS, Vyas HS (1992) Kinetic studies on epoxy resins cured with a novel polyamine. High Perform Polym 4:41–48. doi:10.1088/0954-0083/4/1/005

    Article  Google Scholar 

  20. Jena KK, Chattopadhyay DK, Raju KVSN (2007) Synthesis and characterization of hyperbranched polyurethane–urea coatings. Eur Polym J 43:1825–1837. doi:10.1016/j.eurpolymj.2007.02.042

    Article  CAS  Google Scholar 

  21. Cheng KC, Chuang TH, Chang JS, Guo WJ, Su WF (2005) Effect of feed rate on structure of hyperbranched polymers formed by self-condensing vinyl polymerization in semibatch reactor. Macromolecules 38:8252–8257. doi:10.1021/ma050640s

    Article  CAS  Google Scholar 

  22. Chen A, Yao C, Zeng S, Yi C, Xu Z (2008) Preparation and properties of hyperbranched polyurethanes via oligomeric A2 + bB2 approach. Polym Bull 61:363–371. doi:10.1007/s00289-008-0959-x

    Article  CAS  Google Scholar 

  23. Spindler R, Fréchet JMJ (1993) Synthesis and characterization of hyperbranched polyurethane prepared from blocked isocyanate monomers by step-growth polymerization. Macromolecules 26:4809–4813. doi:10.1021/ma00070a013

    Article  CAS  Google Scholar 

  24. Feast WJ, Rannard SP, Stoddart A (2003) Selective convergent synthesis of aliphatic polyurethane dendrimers. Macromolecules 36:9704–9706. doi:10.1021/ma035511v

    Article  CAS  Google Scholar 

  25. Clark AJ, Echenique J, Haddleton DM, Straw TA, Taylor PC (2001) A noniscocyanate route to monodisperse branched polyurethanes. J Org Chem 66:8687–8689. doi:10.1021/jo016075i

    Article  CAS  Google Scholar 

  26. Kricheldorf HR, Schwarz G (2003) Cyclic polymers by kinetically controlled step-growth polymerization. Macromol Rapid Commun 24:359–381. doi:10.1002/marc.200390063

    Article  CAS  Google Scholar 

  27. McKee MG, Unal S, Wilkes GL, Long TE (2005) Branched polyesters recent advances in synthesis and performance. Pro Polym Sci 30:507–539. doi:10.1016/j.progpolymsci.2005.01.009

    Article  CAS  Google Scholar 

  28. Gao C, Yan D (2003) “A2 + CBn” approach to hyperbranched polymers with alternating ureido and urethane units. Macromolecules 36:613–620. doi:10.1021/ma021411y

    Article  CAS  Google Scholar 

  29. Gao C, Yan D (2004) Hyperbranched polymers from synthesis to applications. Pro Polym Sci 29:183–275. doi:10.1016/j.progpolymsci.2003.12.002

    Article  CAS  Google Scholar 

  30. Abdelrehim M, Komber H, Langewalter J, Brigitle V, Bruchmann B (2004) Synthesis and characterization of hyperbranched poly(urea–urethane)s based on AA*and B2B* monomers. J Polym Sci Part A Polym Chem 42:3062–3081. doi:10.1002/pola.20154

    Article  CAS  Google Scholar 

  31. Fornof AR, Glass TE, Long TE (2006) Degree of branching of highly branched polyurethanes synthesized via the oligomeric A2 plus B3 methodology. Macromol Chem Phys 207:1197–1206. doi:10.1002/macp.200600096

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by Innovation Group Foundation and Elitist Foundation of the Provincial Science & Technology Department, Hubei, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zushun Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, D., Zeng, S., Hu, Q. et al. Synthesis and properties of highly branched poly(urethane–imide) via A2 + B3 approach. Polym. Bull. 64, 877–890 (2010). https://doi.org/10.1007/s00289-009-0178-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-009-0178-0

Keywords

Navigation