Skip to main content
Log in

Chemoenzymatic synthesis of amylose-grafted polyacetylene by polymer reaction manner and its conversion into organogel with DMSO by cross-linking

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This paper reports chemoenzymatic synthesis of amylose-grafted polyacetylene according to the following polymer reaction manner. At first, the amine-functionalized polyacetylene was prepared by the Rh-catalyzed copolymerization of a protected amine-substituted acetylene monomer (tert-butyl propargylcarbamate) with N-propargylethanamide, followed by deprotection process. Then, the maltooligosaccharide chains were introduced on the polyacetylene by the reaction with maltoheptaose lactone. Finally, the phosphorylase-catalyzed enzymatic polymerization from the oligosaccharides on the produced polyacetylene was performed using α-d-glucose 1-phosphate as a monomer to give the polyacetylene having amylose graft-chains. Furthermore, the cross-linking reaction of the remaining amino-groups on the amylose-grafted polyacetylene with hexamethylene diisocyanate was carried out in DMSO to give the insoluble material, which formed the organogel with DMSO. The mechanical property of the gel was evaluated by compressive stress–strain measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 5
Fig. 7

Similar content being viewed by others

References

  1. Stenger-Smith JD (1998) Intrinsically electrically conducting polymers. Synthesis, characterization, and their applications. Prog Polym Sci 23:57

    Article  CAS  Google Scholar 

  2. Yamamoto T, Hayashida N (1998) π-Conjugated polymers bearing electronic and optical functionalities. Preparation, properties, and their applications. React Functional Polym 37:1

    Article  CAS  Google Scholar 

  3. Kadokawa J, Shinmen Y, Shoda S (2005) Synthesis of glucose-containing polyaniline by the oxidative polymerization of N-glucosylaniline. Macromol Rapid Commun 26:103

    Article  CAS  Google Scholar 

  4. Hasegawa T, Kondoh S, Matsuura K, Kobayashi K (1999) Rigid helical poly(glycosyl phenyl isocyanide)s: synthesis, conformational analysis, and recognition by lectins. Macromolecules 32:6595

    Article  CAS  Google Scholar 

  5. Baek M-G, Stevens RC, Charych DH (2000) Design and synthesis of novel glycopolythiophene assemblies for colorimetric detection of influenza virus and E. coli. Bioconjugate Chem 11:777

    Article  CAS  Google Scholar 

  6. Yamashita Y, Kaneko Y, Kadokawa J (2007) Synthesis of glucose-substituted poly(p-phenylene)s with twisted main-chain in one direction due to induced axial chirality. Polym Bull 58:635

    Article  CAS  Google Scholar 

  7. Yamashita Y, Kaneko Y, Kadokawa J (2007) Synthesis of poly(p-phenylene)s having alternating sugar and alkyl substituents by Suzuki coupling polymerization and evaluation of their main-chain conformations. Eur Polym J 43:3795

    Article  CAS  Google Scholar 

  8. Kim I-B, Erdogan B, Wilson JN, Bunz UHF (2004) Sugar-poly(para-phenylene ethynylene) conjugates as sensory materials: efficient quenching by Hg2+ and Pb2+ ions. Chem Eur J 10:6247

    Article  CAS  Google Scholar 

  9. Takasu A, Iso K, Dohmae T, Hirabayashi T (2006) Synthesis of sugar-substituted poly(phenylenevinylene)s. Biomacromolecules 7:411

    Article  CAS  Google Scholar 

  10. Kadokawa J, Suenaga M, Tawa K, Kaneko Y, Tabata M (2006) Polymerization and copolymerization of a new N-propargylamide monomer having a pendant galactose residue to produce sugar-carrying poly(N-propargylamide)s. J Macromol Sci Pure Appl Chem 43:1179

    Article  Google Scholar 

  11. Suenaga M, Kaneko Y, Kadokawa J, Nishikawa T, Mori H, Tabata M (2006) Amphiphilic poly(N-propargylamide) with galactose and lauryloyl groups: synthesis and properties. Macromol Biosci 6:1009

    Article  CAS  Google Scholar 

  12. Ohmae M, Fujikawa S, Ochiai H, Kobayashi S (2006) Enzyme-catalyzed synthesis of natural and unnatural polysaccharides. J Polym Sci Polym Chem 44:5014

    Article  CAS  Google Scholar 

  13. Kobayashi S, Ohmae M (2006) Enzymatic polymerization to polysaccharides. Adv Polym Sci 194:159

    Article  CAS  Google Scholar 

  14. Ziegast G, Pfannemuller B (1987) Phosphorolytic syntheses with di-, oligo- and multi-functional primers. Carbohydr Res 160:185

    Article  CAS  Google Scholar 

  15. Kobayashi K, Kamiya S, Enomoto N (1996) Amylose-carrying styrene macromonomer and its homo- and copolymers: synthesis via enzyme-catalyzed polymerization and complex formation with iodine. Macromolecules 29:8670

    Article  CAS  Google Scholar 

  16. Narumi A, Kawasaki K, Kaga H, Satoh T, Sugimoto N, Kakuchi T (2003) Glycoconjugated polymer 6. Synthesis of poly[styrene-block-(styrene-graft-amylose)] via potato phosphorylase-catalyzed polymerization. Polym Bull 49:405

    Article  CAS  Google Scholar 

  17. Jonas G, Stadler R (1994) Carbohydrate modified polysiloxanes II. Synthesis via hydrosilation of mono-, di- and oligosaccharide allylglycosides. Acta Polym 45:14

    Article  CAS  Google Scholar 

  18. Braunmühl V, Jonas G, Stadler R (1995) Enzymatic grafting of amylose from poly(dimethylsiloxanes). Macromolecules 28:17

    Article  Google Scholar 

  19. Braunmühl V, Stadler R (1998) Synthesis of aldonamide siloxanes by hydrosilylation. Polymer 39:1617

    Article  Google Scholar 

  20. Loos K, Jonas G, Stadler R (2001) Carbohydrate modified polysiloxanes, 3. Solution properties of carbohydrate–polysiloxane conjugates in toluene. Macromol Chem Phys 202:3210

    Article  CAS  Google Scholar 

  21. Kamiya S, Kobayashi K (1998) Synthesis and helix formation of saccharide-poly(l-glutamic acid) conjugates. Macromol Chem Phys 199:1589

    Article  CAS  Google Scholar 

  22. Matsuda S, Kaneko Y, Kadokawa J (2007) Chemoenzymatic synthesis of amylose-grafted chitosan. Macromol Rapid Commun 28:863

    Article  CAS  Google Scholar 

  23. Kaneko Y, Matsuda S, Kadokawa J (2007) Chemoenzymatic syntheses of amylose-grafted chitin and chitosan. Biomacromolecules 8:3959

    Article  CAS  Google Scholar 

  24. Kadokawa J, Nakamura Y, Sasaki Y, Kaneko Y, Nishikawa T (2008) Chemoenzymatic synthesis of amylose-grafted polyacetylenes. Polym Bull 60:57

    Article  CAS  Google Scholar 

  25. Yanase M, Takata H, Fujii K, Takaha T, Kuriki T (2005) Cumulative effect of amino acid replacements results in enhanced thermostability of potato type L α-glucan phosphorylase. Appl Environ Microbiol 71:5433

    Article  CAS  Google Scholar 

  26. Deng J, Tabei J, Shiotsuki M, Sanda F, Masuda T (2004) Conformational transition between random coil and helix of poly(N-propargylamides). Macromolecules 37:1891

    Article  CAS  Google Scholar 

  27. Schrock RR, Osborn JA (1970) π-Bonded complexes of the tetraphenylborate ion with Rhodium(I) and Iridium(I). Inorg Chem 9:2339

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Ezaki Glico Co. Ltd, Osaka for the gift of phosphorylase. J. K. acknowledges the financial support from the Asahi Glass Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-ichi Kadokawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasaki, Y., Kaneko, Y. & Kadokawa, Ji. Chemoenzymatic synthesis of amylose-grafted polyacetylene by polymer reaction manner and its conversion into organogel with DMSO by cross-linking. Polym. Bull. 62, 291–303 (2009). https://doi.org/10.1007/s00289-008-0025-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-008-0025-8

Keywords

Navigation