Skip to main content
Log in

Fluctuating-rate model with multiple gene states

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Multiple phenotypic states of single cells often co-exist in the presence of positive feedbacks. Stochastic gene-state switchings and low copy numbers of proteins in single cells cause considerable fluctuations. The chemical master equation (CME) is a powerful tool that describes the dynamics of single cells, but it may be overly complicated. Among many simplified models, a fluctuating-rate (FR) model has been proposed recently to approximate the full CME model in the realistic intermediate region of gene-state switchings. However, only the scenario with two gene states has been carefully analysed. In this paper, we generalise the FR model to the case with multiple gene states, in which the mathematical derivation becomes more complicated. The leading order of fluctuations around each phenotypic state, as well as the transition rates between phenotypic states, in the intermediate gene-state switching region is characterized by the rate function of the stationary distribution of the FR model in the Freidlin–Wentzell-type large deviation principle (LDP). Under certain reasonable assumptions, we show that the derivative of the rate function is equal to the unique nontrivial solution of a dominant generalised eigenvalue problem, leading to a new numerical algorithm for obtaining the LDP rate function directly. Furthermore, we prove the Lyapunov property of the rate function for the corresponding deterministic mean-field dynamics. Finally, through a tristable example, we show that the local fluctuations (the asymptotic variance of the stationary distribution at each phenotypic state) in the intermediate and rapid regions of gene-state switchings are different. Finally, a tri-stable example is constructed to illustrate the validity of our theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CME:

Chemical master equation

FR:

Fluctuating-rate

DMFD:

Deterministic mean-field dynamics

LDP:

Large deviation principle

NLF:

Nonequilibrium landscape function

GE:

Generalised eigenvalue

DGE:

Dominant generalised eigenvalue

References

  • Acar M, Mettetal JT, van Oudenaarden A (2008) Stochastic switching as a survival strategy in fluctuating environments. Nat Genet 40:471–475

    Google Scholar 

  • Artyomov MN, Das J, Kardar M, Chakraborty AK (2007) Purely stochastic binary decisions in cell signaling models without underlying deterministic bistabilities. Proc Natl Acad Sci USA 104(48):18958–18963

    Google Scholar 

  • Babloyantz A, Sanglier M (1972) Chemical instabilities of “all-or-none” type in beta—galactosidase induction and active transport. FEBS Lett 23(3):364–366

    Google Scholar 

  • Berg OG (1978) A model for the statistical fluctuations of protein numbers in a microbial population. J Theor Biol 71:587–603

    Google Scholar 

  • Bressloff PC (2015) Path-integral methods for analyzing the effects of fluctuations in stochastic hybrid neural networks. J Math Neurosci 5(4):1–33

    MathSciNet  MATH  Google Scholar 

  • Bressloff PC, Faugeras O (2017) On the Hamiltonian structure of large deviations in stochastic hybrid systems. J Stat Mech Theory Exp 2017:033206

    MathSciNet  MATH  Google Scholar 

  • Bressloff PC, Newby JM (2014a) Path integrals and large deviations in stochastic hybrid systems. Phys Rev E 89(042):701

    Google Scholar 

  • Bressloff PC, Newby JM (2014b) Stochastic hybrid model of spontaneous dendritic NMDA spikes. Phys Biol 11(1):016006

    Google Scholar 

  • Choi PJ, Cai L, Frieda K, Xie XS (2008) A stochastic single-molecule event triggers phenotype switching of a bacterial cell. Science 322(5900):442–446

    Google Scholar 

  • Chu KWE (1987) Exclusion theorems and the perturbation analysis of the generalized eigenvalue problem. SIAM J Numer Anal 24(5):1114–1125

    MathSciNet  MATH  Google Scholar 

  • Crudu A, Debussche A, Muller A, Radulescu O (2012) Convergence of stochastic gene networks to hybrid piecewise deterministic processes. Ann Appl Probab 22(5):1822–1859

    MathSciNet  MATH  Google Scholar 

  • Davis MHA (1984) Piecewise-deterministic Markov processes: a general class of non-diffusion stochastic models. J R Stat Soc Ser B (Methodol) 46(3):353–388

    MathSciNet  MATH  Google Scholar 

  • Davis MHA (1993) Markov models and optimization, monographs on statistics and applied probability, vol 49. Chapman and Hall, London

    Google Scholar 

  • Delbrück M (1940) Statistical fluctuations in autocatalytic reactions. J Chem Phys 8(1):120

    Google Scholar 

  • Deutsch E, Neumann M (1984) Derivatives of the Perron root at an essentially nonnegative matrix and the group inverse of an \(M\)-matrix. J Math Anal Appl 102(1):1–29

    MathSciNet  MATH  Google Scholar 

  • Dürrenberger P, Gupta A, Khammash M (2019) A finite state projection method for steady-state sensitivity analysis of stochastic reaction networks. J Chem Phys 150(134):101

    Google Scholar 

  • Dykman MI, Mori E, Ross J, Hunt PM (1994) Large fluctuations and optimal paths in chemical kinetics. J Chem Phys 100:5735

    Google Scholar 

  • Eldar A, Elowitz MB (2010) Functional roles for noise in genetic circuits. Nature 467:167–173

    Google Scholar 

  • Faggionato A, Gabrielli D, Crivellari MR (2009) Non-equilibrium thermodynamics of piecewise deterministic Markov processes. J Stat Phys 137:259–304

    MathSciNet  MATH  Google Scholar 

  • Faggionato A, Gabrielli D, Crivellari MR (2010) Averaging and large deviation principles for fully-coupled piecewise deterministic Markov processes and applications to molecular motors. Markov Process Relat Fields 16(3):497–548

    MathSciNet  MATH  Google Scholar 

  • Feng H, Han B, Wang J (2011) Adiabatic and non-adiabatic non-equilibrium stochastic dynamics of single regulating genes. J Phys Chem 115(5):1254–1261

    Google Scholar 

  • Feng J, Kurtz TG (2015) Large deviations for stochastic processes, mathematical surveys and monographs, vol 131. American Mathematical Society, Providence

    Google Scholar 

  • Frauenfelder H, Sligar SG, Wolynes PG (1991) The energy landscapes and motions of proteins. Science 254(5038):1598–1603

    Google Scholar 

  • Freidlin MI, Wentzell AD (2014) Random perturbations of dynamical systems, Grundlehren der mathematischen Wissenschaften, vol 260, 3rd edn. Spinger, Berlin

    Google Scholar 

  • Frobenius G (1912) Ueber matrizen aus nicht negativen elementen. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, pp 456–477

  • Ge H, Qian H (2009) Thermodynamic limit of a nonequilibrium steady state: Maxwell-type construction for a bistable biochemical system. Phys Rev Lett 103(148):103

    Google Scholar 

  • Ge H, Qian H, Xie XS (2015) Stochastic phenotype transition of a single cell in an intermediate region of gene state switching. Phys Rev Lett 114(078):101

    Google Scholar 

  • Ge H, Wu P, Qian H, Xie SX (2018) Relatively slow stochastic gene-state switching in the presence of positive feedback significantly broadens the region of bimodality through stabilizing the uninduced phenotypic state. PLoS Comput Biol 14(3):e1006051

    Google Scholar 

  • Gershgorin SA (1931) über die abgrenzung der eigenwerte einer matrix. Bull l’Acad Sci l’URSS Classe Sci Math 6:749–754

    MATH  Google Scholar 

  • Gillespie DT (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comput Phys 22(4):403–434

    MathSciNet  Google Scholar 

  • Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81(25):2340–2361

    Google Scholar 

  • Grima R, Schmidt DR, Newman TJ (2012) Steady-state fluctuations of a genetic feedback loop: An exact solution. J Chem Phys 137(3):035104

    Google Scholar 

  • Gupta PB, Fillmore CM, Jiang G, Shapira SD, Tao K, Kuperwasser C, Lander ES (2011) Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146(4):633–644

    Google Scholar 

  • Gupta A, Mikelson J, Khammash M (2017) A finite state projection algorithm for the stationary solution of the chemical master equation. J Chem Phys 147(154):101

    Google Scholar 

  • Hanggi P, Grabert H, Talkner P, Thomas H (1984) Bistable systems: master equation versus Fokker–Planck modeling. Phys Rev A 29:371–378

    MathSciNet  Google Scholar 

  • Hasenauer J, Wolf V, Kazeroonian A, Theis FJ (2014) Method of conditional moments (MCM) for the chemical master equation. J Math Biol 69:687–735

    MathSciNet  MATH  Google Scholar 

  • Hegland M, Hellander A, Lötstedt P (2008) Sparse grids and hybrid methods for the chemical master equation. BIT Numer Math 48:265–283

    MathSciNet  MATH  Google Scholar 

  • Hornos JEM, Schultz D, Innocentini GCP, Wang J, Walczak AM, Onuchic JN, Wolynes PG (2005) Self-regulating gene: an exact solution. Phys Rev E 72(051):907

    MathSciNet  Google Scholar 

  • Hufton PG, Lin YT, Galla T, McKane AJ (2016) Intrinsic noise in systems with switching environments. Phys Rev E 93(052):119

    Google Scholar 

  • Hufton PG, Lin YT, Galla T (2018) Phenotypic switching of populations of cells in a stochastic environment. J Stat Mech Theory Exp 023:501

    MathSciNet  Google Scholar 

  • Hufton PG, Lin YT, Galla T (2019a) Classical stochastic systems with fast-switching environments: reduced master equations, their interpretation, and limits of validity. Phys Rev E 99(032):121

    MathSciNet  Google Scholar 

  • Hufton PG, Lin YT, Galla T (2019b) Model reduction methods for population dynamics with fast-switching environments: reduced master equations, stochastic differential equations, and applications. Phys Rev E 99(032):122

    MathSciNet  Google Scholar 

  • Ikramov KD (1993) Matrix pencils: theory, applications, and numerical methods. J Sov Math 64:783–853

    MATH  Google Scholar 

  • Jia C, Qian H, Chen M, Zhang MQ (2018) Relaxation rates of gene expression kinetics reveal the feedback signs of autoregulatory gene networks. J Chem Phys 148(9):095102

    Google Scholar 

  • Kang HW, Kurtz TG (2013) Separation of time-scales and model reduction for stochastic reaction networks. Ann Appl Probab 23(2):529–583

    MathSciNet  MATH  Google Scholar 

  • Karmakar R, Bose I (2004) Graded and binary responses in stochastic gene expression. Phys Biol 1(4):197

    Google Scholar 

  • Kazeev V, adn Michael Nip MK, Schwab C (2014) Direct solution of the chemical master equation using quantized tensor trains. PLOS Comput Biol 10(3):e1003359

    Google Scholar 

  • Keener JP, Newby JM (2011) Perturbation analysis of spontaneous action potential initiation by stochastic ion channels. Phys Rev E 84(011):918

    Google Scholar 

  • Kepler TB, Elston TC (2001) Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. Biophys J 81(6):3116–3136

    Google Scholar 

  • Kifer Y (2009) Large deviations and adiabatic transitions for dynamical systems and Markov processes in fully coupled averaging. Mem Am Math Soc 201(944)

  • Knessl C, Matkowsky BJ, Schuss Z, Tier C (1985) An asymptotic theory of large deviations for Markov jump processes. SIAM J Appl Math 45(6):1006–1028

    MathSciNet  MATH  Google Scholar 

  • Kussell E, Leibler S (2005) Phenotypic diversity, population growth, and information in fluctuating environments. Science 309(5743):2075–2078

    Google Scholar 

  • Li GW, Xie XS (2011) Central dogma at the single-molecule level in living cells. Nature 475:308–315

    Google Scholar 

  • Lin YT, Doering CR (2016) Gene expression dynamics with stochastic bursts: construction and exact results for a coarse-grained model. Phys Rev E 93(022):409

    MathSciNet  Google Scholar 

  • Lu M, Onuchic J, Ben-Jacob E (2014) Construction of an effective landscape for multistate genetic switches. Phys Rev Lett 113(078):102

    Google Scholar 

  • MacNamara S, Burrage K, Sidje RB (2008) Multiscale modeling of chemical kinetics via the master equation. Multiscale Model Simul 6(4):1146–1168

    MathSciNet  MATH  Google Scholar 

  • Mateescu M, Wolf V, Didier F, Henzinger TA (2010) Fast adaptive uniformisation of the chemical master equation. IET Syst Biol 4(6):441–452

    Google Scholar 

  • Munskya B, Khammashb M (2006) The finite state projection algorithm for the solution of the chemical master equation. J Chem Phys 124(4):044104

    Google Scholar 

  • Newby JM (2012) Isolating intrinsic noise sources in a stochastic genetic switch. Phys Biol 9(026):002

    Google Scholar 

  • Newby J (2015) Bistable switching asymptotics for the self regulating gene. J Phys A Math Theor 48(18):185001

    MathSciNet  MATH  Google Scholar 

  • Newby J, Chapman J (2014) Metastable behavior in Markov processes with internal states. J Math Biol 69:941–976

    MathSciNet  MATH  Google Scholar 

  • Newby JM, Keener JP (2011) An asymptotic analysis of the spatially inhomogeneous velocity-jump process. Multiscale Model Simul 9(2):735–765

    MathSciNet  MATH  Google Scholar 

  • Newby JM, Bressloff PC, Keener JP (2013) Breakdown of fast–slow analysis in an excitable system with channel noise. Phys Rev Lett 111(128):101

    Google Scholar 

  • Ochab-Marcinek A, Tabaka M (2010) Bimodal gene expression in noncooperative regulatory systems. Proc Natl Acad Sci USA 107(51):22096–22101

    Google Scholar 

  • Olivieri E, Vares ME (2005) Large deviations and metastability, encyclopedia of mathematics and its applications, vol 100. Cambridge University Press, Cambridge

    Google Scholar 

  • Onuchic JN, Luthey-Schulten Z, Wolynes PG (1997) Theory of protein folding: the energy landscape perspective. Ann Rev Phys Chem 48:545–600

    Google Scholar 

  • Ozbudak EM, Thattai M, Lim HN, Shraiman BI, van Oudenaarden A (2004) Multistability in the lactose utilization network of Escherichia coli. Nature 427:737–740

    Google Scholar 

  • Paulsson J (2005) Models of stochastic gene expression. Phys Life Rev 2(2):157–175

    Google Scholar 

  • Peleš S, Munsky B, Khammash M (2006) Reduction and solution of the chemical master equation using time scale separation and finite state projection. J Chem Phys 125(20):204104

    Google Scholar 

  • Qian H (2014) Fitness and entropy production in a cell population dynamics with epigenetic phenotype switching. Quant Biol 2(1):47–53

    Google Scholar 

  • Qian H, Shia PZ, Xing J (2009) Stochastic bifurcation, slow fluctuations, and bistability as an origin of biochemical complexity. Phys Chem Chem Phys 24(11):4861–4870

    Google Scholar 

  • Ramos AF, Innocentini GCP, Hornos JEM (2011) Exact time-dependent solutions for a self-regulating gene. Phys Rev E 83(062):902

    Google Scholar 

  • Redner S (2007) A guide to first-passage processes. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Samad HE, Khammash M, Petzold L, Gillespie D (2005) Stochastic modelling of gene regulatory networks. Int J Robust Nonlinear Control 15(15):691–711

    MathSciNet  MATH  Google Scholar 

  • Santillán M (2008) Bistable behavior in a model of the lac operon in Escherichia coli with variable growth rate. Biophys J 94(6):2065–2081

    Google Scholar 

  • Taniguchi Y, Choi PJ, Li GW, Chen H, Babu M, Hearn J, Emili A, Xie XS (2010) Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329(5991):533–538

    Google Scholar 

  • Thattai M, van Oudenaarden A (2001) Intrinsic noise in gene regulatory networks. Proc Natl Acad Sci USA 98(15):8614–8619

    Google Scholar 

  • To TL, Maheshri N (2010) Noise can induce bimodality in positive transcriptional feedback loops without bistability. Science 327(5969):1142–1145

    Google Scholar 

  • Touchette H (2009) The large deviation approach to statistical mechanics. Phys Rep 478:1–69

    MathSciNet  Google Scholar 

  • Vellela M, Qian H (2008) Stochastic dynamics and non-equilibrium thermodynamics of a bistable chemical system: the Schlogl model revisited. J R Soc Interface 6(39):925–940

    Google Scholar 

  • Wang J, Xu L, Wang E, Huang S (2010) The potential landscape of genetic circuits imposes the arrow of time in stem cell differentiation. Biophys J 99(1):29–39

    Google Scholar 

  • Zhou JX, Aliyu MDS, Aurell E, Huang S (2012) Quasi-potential landscape in complex multi-stable systems. J R Soc Interface 9(77):3539–3553

    Google Scholar 

  • Zhu Z, Shendure J, Church GM (2005) Discovering functional transcription-factor combinations in the human cell cycle. Genome Res 15(6):848–855

    Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of China, Grant No. 11971037 and 11622101 (Hao Ge), and Natural Science Foundation of China, Grant No. 11271083 (Yunxin Zhang).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Ge.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Results related to dominant generalised eigenvalue problem

  • \(G>0\): matrix dimension/size.

  • \({\mathcal {G}}:=\left\{ 1,2,3,\cdots ,G\right\} \).

  • \(B=\left( b_{i,j}\right) _{G\times G}\): general \(G\times G\) matrix.

  • \(B^{{\mathcal {S}}_1,{\mathcal {S}}_2}\) for \({\mathcal {S}}_1,{\mathcal {S}}_2\subset {\mathcal {G}}\): principal submatrix of B formed by rows in \({\mathcal {S}}_1\) and columns in \({\mathcal {S}}_2\). Particularly, \(B^{{\mathcal {S}}}:=B^{{\mathcal {S}},{\mathcal {S}}}\) for \({\mathcal {S}}\subset {\mathcal {G}}\).

  • \({\bar{i}}:={\mathcal {G}}{\setminus }\left\{ i\right\} \).

  • \(|b_{\cdot ,j}|:=\sum _{i\ne j}|b_{i,j}|\).

  • Z: \(G\times G\) Z-matrix (real matrix such that off-diagonal elements are nonpositive) in the normal form (block upper-triangular form with each diagonal block irreducible).

  • \({\mathcal {I}}\): indices of irreducible diagonal blocks of Z.

  • \(Z_i\) for \(i\in {\mathcal {I}}\): irreducible diagonal blocks of Z.

  • M: \(G\times G\) M-matrix (Z-matrix such that all eigenvalues have nonnegative real parts) in the normal form. Note that we allow singular M-matrix.

  • D: \(G\times G\) real diagonal matrix.

  • \(D_i\) for \(i\in {\mathcal {I}}\): diagonal blocks of D corresponding to \(Z_i\).

  • \(d_i\) for \(i\in {\mathcal {G}}\): the ith diagonal element of D.

  • \({\mathcal {G}}_0:=\left\{ i\in {\mathcal {G}}|d_i=0\right\} \). \({\mathcal {G}}_+:=\left\{ i\in {\mathcal {G}}|d_i>0\right\} \). \({\mathcal {G}}_-:=\left\{ i\in {\mathcal {G}}|d_i<0\right\} \).

  • \(r\left( Z\right) \): dominant eigenvalue (the eigenvalue with smallest real part, which must be real by the Perron–Frobenius theorem) of Z.

  • \(m\left( D\right) \) and \(n\left( D\right) \): the number of positive and negative diagonal elements of D. \(D\ne 0\) means \(m\left( D\right) +n\left( D\right) >0\).

  • \(O\left( o,\rho \right) :=\left\{ z\in {\mathbb {C}}||z-o|\le \rho \right\} \), where \(o\in {\mathbb {C}}\) and \(\rho \ge 0\).

In this “Appendix”, we state results without proofs. Their proofs are given in “Appendix B”. We always assume \(D\ne 0\).

Definition A1

Denote the real part of \(\lambda \in {\mathbb {C}}\) by \(\mathfrak {R}(\lambda )\). Define

$$\begin{aligned}&\varLambda \left( B|D\right) :=\left\{ \lambda \in {\mathbb {C}}|\det \left( B-\lambda D\right) =0\right\} ,\\&\varLambda _+\left( B|D\right) :=\left\{ \lambda \in \varLambda \left( B|D\right) |\mathfrak {R}\left( \lambda \right) >0\right\} ,\\&\varLambda _-\left( B|D\right) :=\left\{ \lambda \in \varLambda \left( B|D\right) |\mathfrak {R}\left( \lambda \right) <0\right\} ,\\&\varLambda _0\left( B|D\right) :=\left\{ \lambda \in \varLambda \left( B|D\right) |\mathfrak {R}\left( \lambda \right) =0\right\} . \end{aligned}$$

\(\lambda \in \varLambda \left( B|D\right) \) is called the generalised eigenvalue (GE) of B on D (Chu 1987; Ikramov 1993). For \(\lambda _0\in \varLambda \left( B|D\right) \), let \(c\left( \lambda _0|B|D\right) \) be the multiplicity of \(\lambda _0\) as a root of \(\det \left( B-\lambda D\right) =0\). We define \(R\left( Z|D\right) :=\left\{ \lambda \in {\mathbb {R}}|r\left( Z-\lambda D\right) =0\right\} \), and call \(\lambda \in R\left( Z|D\right) \) the dominant generalised eigenvalue (DGE) of Z on D. Define \(\varXi \left( Z-\lambda D\right) :=\det \left( Z-\lambda D\right) /r\left( Z-\lambda D\right) \), which is analytic even for \(\lambda \in R\left( Z|D\right) \) because they are removable singular points.

Lemma A1

Assume that M is irreducible.

  1. 1.

    If \(n\left( D\right) =0\), then \(R\left( M|D\right) =\left\{ \mu _+\right\} \) with \(\mu _+\ge 0\) and \(c\left( \mu _+|M|D\right) =1\). \(r\left( M-\lambda D\right) >0\) for \(\lambda <\mu _+\) and \(r\left( M-\lambda D\right) <0\) for \(\lambda >\mu _+\).

  2. 2.

    If \(m\left( D\right) =0\), then \(R\left( M|D\right) =\left\{ \mu _-\right\} \) with \(\mu _-\le 0\) and \(c\left( \mu _-|M|D\right) =1\). \(r\left( M-\lambda D\right) >0\) for \(\lambda >\mu _-\) and \(r\left( M-\lambda D\right) <0\) for \(\lambda <\mu _-\).

  3. 3.

    Otherwise, \(R\left( M|D\right) =\left\{ \mu _-,\mu _+\right\} \) with \(\mu _+\ge 0\ge \mu _-\). \(c\left( \mu _{\pm }|M|D\right) =1\) unless \(\mu _{\pm }=0\), at which \(c\left( \mu _{\pm }|M|D\right) =c\left( 0|M|D\right) =2\). \(r\left( M-\lambda D\right) >0\) for \(\mu _-<\lambda <\mu _+\) and \(r\left( M-\lambda D\right) <0\) for \(\lambda <\mu _-\) or \(\lambda >\mu _+\).

Lemma A1 justifies Definition A2.

Definition A2

For irreducible M, define \(\mu _+\left( M|D\right) :=\max _{\lambda \in R\left( M|D\right) }\lambda \) for \(m\left( D\right) >0\), and \(\mu _-\left( M|D\right) :=\min _{\lambda \in R\left( M|D\right) }\lambda \) for \(n\left( D\right) >0\).

Definition A2 can be explained as follows. By Lemma A1, for \(m\left( D\right) >0\) and \(n\left( D\right) =0\), there is only a nonnegative DGE for M on D, which is denoted by \(\mu _+\left( M|D\right) \). Similarly, for \(m\left( D\right) =0\) and \(n\left( D\right) >0\), there is only a nonpositive DGE, which is denoted by \(\mu _-\left( M|D\right) \). If \(m\left( D\right) >0\) and \(n\left( D\right) >0\), then there are both a nonnegative DGE and a nonpositive DGE, which are respectively denoted by \(\mu _+\left( M|D\right) \) and \(\mu _-\left( M|D\right) \).

Since \(r\left( M-\lambda D\right) =\min _{i\in {\mathcal {G}}}r\left( M_i-\lambda D_i\right) \), the results in Lemma A1 can be generalised to reducible M (see Corollary A1) if for any irreducible diagonal block \(i\in {\mathcal {I}}\) such that \(D_i=0\), \(M_i\) is nonsingular. Lemma A2 provides a sufficient condition for this.

Lemma A2

\({\mathcal {K}}_0^{\mathrm{sin}}:=\left\{ i\in {\mathcal {I}}|m\left( D_i\right) =n\left( D_i\right) =0,\det \left( M_i\right) =0\right\} =\emptyset \) if and only if \(\det \left( M^{{\mathcal {G}}_0}\right) \ne 0\).

Corollary A1

Assume that \(\det \left( M^{{\mathcal {G}}_0}\right) \ne 0\).

  1. 1.

    If \(n\left( D\right) =0\), then \(R\left( M|D\right) =\left\{ \mu _+\right\} \) with

    $$\begin{aligned} \mu _+=\mu _+\left( M|D\right) :=\min _{i:m\left( D_i\right) >0}\mu _+\left( M_i|D_i\right) , \end{aligned}$$

    \(r\left( M-\lambda D\right) <0\) for \(\lambda >\mu _+\), and \(r\left( M-\lambda D\right) >0\) for \(\lambda <\mu _+\).

  2. 2.

    If \(m\left( D\right) =0\), then \(R\left( M|D\right) =\left\{ \mu _-\right\} \) with

    $$\begin{aligned} \mu _-=\mu _-\left( M|D\right) :=\max _{i:n\left( D_i\right) >0}\mu _-\left( M_i|D_i\right) , \end{aligned}$$

    \(r\left( M-\lambda D\right) <0\) for \(\lambda <\mu _-\), and \(r\left( M-\lambda D\right) >0\) for \(\lambda >\mu _-\).

  3. 3.

    Otherwise, \(R\left( M|D\right) =\left\{ \mu _-,\mu _+\right\} \) with

    $$\begin{aligned}&\mu _+=\mu _+\left( M|D\right) :=\min _{i:m\left( D_i\right)>0}\mu _+\left( M_i|D_i\right) ,\\&\mu _-=\mu _-\left( M|D\right) :=\max _{i:n\left( D_i\right) >0}\mu _-\left( M_i|D_i\right) , \end{aligned}$$

    \(r\left( M-\lambda D\right) <0\) for \(\lambda <\mu _-\) or \(\lambda >\mu _+\), and \(r\left( M-\lambda D\right) >0\) for \(\mu _-<\lambda <\mu _+\).

Corollary A1 extends Definition A2 to reducible M, and gives Lemma A3.

Lemma A3

Assume that \(M\left( \theta \right) \) is a continuous \(G\times G\) M-matrix function of \(\theta \), \(D\left( \theta \right) \) is a continuous \(G\times G\) diagonal matrix function of \(\theta \) with constant \({\mathcal {G}}_{\pm }\) and \({\mathcal {G}}_0\) \(\forall \theta \), and \(\det \left[ M^{{\mathcal {G}}_0}\left( \theta \right) \right] \ne 0\) \(\forall \theta \).

  1. 1.

    If \(m\left[ D\left( \theta \right) \right] >0\), then \(\mu _+\left( \theta \right) :=\mu _+\left( M|D\right) \left( \theta \right) \) is continuous.

  2. 2.

    If \(n\left[ D\left( \theta \right) \right] >0\), then \(\mu _-\left( \theta \right) :=\mu _-\left( M|D\right) \left( \theta \right) \) is continuous.

Lemma A4

  1. 1.

    Assume that \(|b_{j,j}|\ge |b_{\cdot ,j}|\) \(\forall j\in {\mathcal {G}}_0\), \(B^{{\mathcal {G}}_0}\) is irreducible, and \(\exists j_0\in {\mathcal {G}}_0\) such that \(|b_{j_0,j_0}|>\sum _{i\in {\mathcal {G}}_0{\setminus }\left\{ j_0\right\} }|b_{i,j_0}|\). Then

    $$\begin{aligned} \bigcup _{j\in {\mathcal {G}}{\setminus }{\mathcal {G}}_0}O\left( b_{j,j}/d_j,|b_{\cdot ,j}|/|d_j|\right) =:{\mathcal {O}}\left( B|D\right) \supset \varLambda \left( B|D\right) . \end{aligned}$$
  2. 2.

    Under the assumptions in statement 1, further assume that \(b_{j,j}\ge 0\) for \(j\notin {\mathcal {G}}_0\) and B is diagonally dominant for all columns. Then

    $$\begin{aligned} \sum _{\lambda \in \left[ \varLambda \cap {\mathcal {O}}_+\right] \left( B|D\right) }c\left( \lambda |B|D\right) \ge m\left( D\right) ,\quad \sum _{\lambda \in \left[ \varLambda \cap {\mathcal {O}}_-\right] \left( B|D\right) }c\left( \lambda |B|D\right) \ge n\left( D\right) , \end{aligned}$$

    where \({\mathcal {O}}_{\pm }\left( B|D\right) :=\bigcup _{j\in {\mathcal {G}}_{\pm }}O\left( b_{j,j}/d_j,|b_{\cdot ,j}|/d_j\right) \).

Lemma A4 generalises the Gershgorin circle theorem to GEs.

Definition A3

Let \(T=\left( t_{i,j}\right) _{G\times G}\) be a Z-matrix with \(\sum _{i\in {\mathcal {G}}} t_{i,j}=0\) \(\forall j\in {\mathcal {G}}\). T is called a negative transition rate matrix. Let \(m\left( T|D\right) :=\sum _{\lambda \in \varLambda _+\left( T|D\right) }c\left( \lambda |T|D\right) \) and \(n\left( T|D\right) :=\sum _{\lambda \in \varLambda _-\left( T|D\right) }c\left( \lambda |T|D\right) \).

Lemmas A5 and A6, and Theorem A1 connect the signs of the real parts of GEs with the signatures of D for negative transition rate matrix T step by step. Since T is diagonally dominant, it is not hard to prove by the Gershgorin circle theorem that T is a singular M-matrix. Applying Lemma A4 to T, we have Lemma A5.

Lemma A5

Assume that \(T^{{\mathcal {G}}_0}\) is irreducible, and \(\exists j_0\in {\mathcal {G}}_0\) such that \(|t_{j_0,j_0}|>\sum _{i\in {\mathcal {G}}_0{\setminus }\left\{ j_0\right\} }|t_{i,j_0}|\). Then \(\varLambda _0\left( T|D\right) \subset \left\{ 0\right\} \), and exact one of the following happens.

  1. 1.

    \(m\left( T|D\right) =m\left( D\right) \).

  2. 2.

    \(n\left( T|D\right) =n\left( D\right) \).

  3. 3.

    \(m\left( T|D\right) <m\left( D\right) \), \(n\left( T|D\right) <n\left( D\right) \).

If T is irreducible, Lemma A5 becomes Lemma A6 by Lemma A1.

Lemma A6

Assume that T is irreducible, \(T^{{\mathcal {G}}_0}\) is irreducible, and \(\exists j_0\in {\mathcal {G}}_0\) such that \(|t_{j_0,j_0}|>\sum _{i\in {\mathcal {G}}_0{\setminus }\left\{ j_0\right\} }|t_{i,j_0}|\). Then exact one of the following happens.

  1. 1.

    \(m\left( T|D\right) =m\left( D\right) \), \(n\left( T|D\right) =n\left( D\right) -1\), \(\mu _-\left( T|D\right) =0\), \(c\left( \mu _-|T|D\right) =1\). If \(m\left( D\right) >0\), \(\mu _+\left( T|D\right) >0\) and \(c\left( \mu _+|T|D\right) =1\).

  2. 2.

    \(m\left( T|D\right) =m\left( D\right) -1\), \(n\left( T|D\right) =n\left( D\right) \), \(\mu _+\left( T|D\right) =0\), \(c\left( \mu _+|T|D\right) =1\). If \(n\left( D\right) >0\), \(\mu _-\left( T|D\right) <0\) and \(c\left( \mu _-|T|D\right) =1\).

  3. 3.

    \(m\left( T|D\right) =m\left( D\right) -1\), \(n\left( T|D\right) =n\left( D\right) -1\), \(\mu _{\pm }\left( T|D\right) =0\), \(c\left( \mu _{\pm }|T|D\right) =1\).

Theorem A1 generalises Lemma A6 to reducible T, and concretizes Lemma A5.

Theorem A1

Assume that \(T^{{\mathcal {G}}_0}\) is irreducible, and \(\exists j_0\in {\mathcal {G}}_0\) such that \(|t_{j_0,j_0}|>\sum _{i\in {\mathcal {G}}_0{\setminus }\left\{ j_0\right\} }|t_{i,j_0}|\). Then exact one of the following happens.

  1. 1.

    \(m\left( T|D\right) =m\left( D\right) \), \(\mu _-\left( T|D\right) =0\). If \(m\left( D\right) >0\), \(\mu _+\left( T|D\right) >0\).

  2. 2.

    \(n\left( T|D\right) =n\left( D\right) \), \(\mu _+\left( T|D\right) =0\). If \(n\left( D\right) >0\), \(\mu _-\left( T|D\right) <0\).

  3. 3.

    \(m\left( T|D\right) <m\left( D\right) \), \(n\left( T|D\right) <n\left( D\right) \), \(\mu _{\pm }\left( T|D\right) =0\).

Definition A4

\(T^{{\mathcal {G}}_0}\) is irreducible. \(\exists j_0\in {\mathcal {G}}_0\) such that \(|t_{j_0,j_0}|>\sum _{i\in {\mathcal {G}}_0{\setminus }\left\{ j_0\right\} }|t_{i,j_0}|\). For \(m\left( D\right) ,n\left( D\right) >0\), define

$$\begin{aligned} \mu \left( T|D\right) :=\left\{ \begin{array}{c@{\quad }c} \mu _+\left( T|D\right) , &{} \mu _+\left( T|D\right) >0,\\ \mu _-\left( T|D\right) , &{} \mu _+\left( T|D\right) =0, \end{array}\right. \end{aligned}$$

as the nontrivial DGE of T on D.

By Theorem A1, at least one of \(\mu _{\pm }\left( T|D\right) \) is zero. Therefore, the nontrivial DGE in Definition A4 is obtained by always choosing the nonzero DGE if possible.

Theorem A2

Assume that \(T=T\left( \theta \right) \) is a continuous \(G\times G\) negative transition rate matrix function of \(\theta \), \(D\left( \theta \right) \) is a continuous \(G\times G\) diagonal matrix function of \(\theta \) with constant \({\mathcal {G}}_{\pm }\) and \({\mathcal {G}}_0\) \(\forall \theta \), and \(\det \left[ T^{{\mathcal {G}}_0}\left( \theta \right) \right] \ne 0\) \(\forall \theta \). Then \(\mu \left( \theta \right) :=\mu \left( T|D\right) \left( \theta \right) \) is continuous.

Theorem A2 proves the continuity of \(\mu \left( T|D\right) \) by Lemma A3.

Lemma A7

For \(\epsilon >0\) and \(j_0\in {\mathcal {G}}\), let \(Z^\epsilon :=\left( z^\epsilon _{i,j}\right) _{G\times G}\) with \(z^\epsilon _{i,j_0}:=\epsilon z_{i,j_0}\) and \(z^\epsilon _{i,j}:=z_{i,j}\) for \(j\ne j_0\). Then \({{\,\mathrm{sgn}\,}}\left[ r\left( Z^\epsilon \right) \right] \equiv {{\,\mathrm{sgn}\,}}\left[ r\left( Z\right) \right] \), where \({{\,\mathrm{sgn}\,}}\) is the sign function.

Lemma A8

Assume that T is irreducible. Then \(v=\left( v_j\right) _{G\times 1}\ne 0\) satisfies \(Tv=0\) iff

$$\begin{aligned} \frac{v_1}{\det \left( T^{{\bar{1}}}\right) }=\frac{v_2}{\det \left( T^{{\bar{2}}}\right) }=\frac{v_3}{\det \left( T^{{\bar{3}}}\right) }=\cdots =\frac{v_G}{\det \left( T^{{\bar{G}}}\right) }. \end{aligned}$$

Appendix B: Proofs of results in “Appendix A”

Proof of Lemma A1.

Proof

Case 1: Since \(r\left( M-\lambda D\right) \) has the smallest real part among all eigenvalues of \(M-\lambda D\), it is not hard to show by the Gershgorin circle theorem that \(\lim _{\lambda \rightarrow +\infty }r\left( M-\lambda D\right) =-\infty \). By \(r\left( M\right) \ge 0\), \(\exists \mu _+\ge 0\) such that \(r\left( M-\mu _+ D\right) =0\). Because \(D>0\), \(\lambda <\mu _+ \Rightarrow M-\lambda D>M-\mu _+ D \Rightarrow r\left( M-\lambda D\right) >r\left( M-\mu _+ D\right) =0\). \(\frac{dr\left( M-\lambda D\right) }{d\lambda }|_{\lambda =\mu _+}<0\) since otherwise, by \(\frac{d^2r\left( M-\lambda D\right) }{d\lambda ^2}<0\) (Deutsch and Neumann 1984), \(r\left( M-\lambda D\right) <0\) for \(\lambda <\mu _+\), conflicts. By \(\frac{d^2r\left( M-\lambda D\right) }{d\lambda ^2}<0\), \(r\left( M-\lambda D\right) <0\) for \(\lambda >\mu _+\). \(\varXi \left( M-\mu _+ D\right) >0\) because it is the product of nondominant eigenvalues of irreducible M-matrix \(M-\mu _+ D\). Therefore,

$$\begin{aligned} \frac{d\det \left( M-\lambda D\right) }{d\lambda }\bigg |_{\lambda =\mu _+}= & {} \frac{dr\left( M-\lambda D\right) \varXi \left( M-\lambda D\right) }{d\lambda }\bigg |_{\lambda =\mu _+}\nonumber \\= & {} \frac{dr\left( M-\lambda D\right) }{d\lambda }\varXi \left( M-\lambda D\right) \bigg |_{\lambda =\mu _+}\nonumber \\&+\,r\left( M-\lambda D\right) \frac{d\varXi \left( M-\lambda D\right) }{d\lambda }\bigg |_{\lambda =\mu _+}\nonumber \\= & {} \frac{dr\left( M-\lambda D\right) }{d\lambda }\bigg |_{\lambda =\mu _+}\varXi \left( M-\mu _+ D\right) <0, \end{aligned}$$
(A1)

i.e. \(c\left( \mu _+|M|D\right) =1\).

Case 2: Similar as case 1.

Case 3: Resembling case 1, \(\lim _{\lambda \rightarrow \pm \infty }r\left( M-\lambda D\right) =-\infty \). If \(r\left( M\right) >0\), \(\exists \mu _+>0>\mu _-\) such that \(r\left( M-\mu _{\pm } D\right) =0\). Because \(\frac{d^2r\left( M-\lambda D\right) }{d\lambda ^2}<0\), we have

$$\begin{aligned} \frac{dr\left( M-\lambda D\right) }{d\lambda }|_{\lambda =\mu _+}<0<\frac{dr\left( M-\lambda D\right) }{d\lambda }|_{\lambda =\mu _-}, \end{aligned}$$

\(r\left( M-\lambda D\right) >0\) for \(\mu _-<\lambda <\mu _+\), and \(r\left( M-\lambda D\right) <0\) for \(\lambda <\mu _-\) or \(\lambda >\mu _+\). By Eq. (A1), \(\frac{d\det \left( M-\lambda D\right) }{d\lambda }|_{\lambda =\mu _+}<0<\frac{d\det \left( M-\lambda D\right) }{d\lambda }|_{\lambda =\mu _-}\). Thus, \(c\left( \mu _{\pm }|M|D\right) =1\).

If \(r\left( M\right) =0\) and \(\frac{dr\left( M-\lambda D\right) }{d\lambda }\big |_{\lambda =0}>0\) (\(\frac{dr\left( M-\lambda D\right) }{d\lambda }\big |_{\lambda =0}<0\)), \(\exists \mu _-=0<\mu _+\) (\(\mu _-<0=\mu _+\)) such that \(r\left( M-\mu _{\pm } D\right) =0\) since \(\lim _{\lambda \rightarrow \pm \infty }r\left( M-\lambda D\right) =-\infty \). The subsequent proofs are the same as \(r\left( M\right) >0\). If \(\frac{dr\left( M-\lambda D\right) }{d\lambda }\big |_{\lambda =0}=0\), since \(\frac{d^2r\left( M-\lambda D\right) }{d\lambda ^2}<0\), \(r\left( M-\lambda D\right) <0\) for \(\lambda \ne 0\), and \(c\left( 0|M|D\right) =2\). \(\square \)

Proof of Lemma A2.

Proof

Sufficiency: Define \({\mathcal {K}}_0^{\mathrm{non}}:=\left\{ i\in {\mathcal {I}}|m\left( D_i\right) =n\left( D_i\right) =0,\det \left( M_i\right) \ne 0\right\} \). \(\forall i\in {\mathcal {K}}_0^{\mathrm{sin}}\cup {\mathcal {K}}_0^{\mathrm{non}}\), \(M_i\) is a principal submatrix of the nonsingular M-matrix \(M^{{\mathcal {G}}_0}\), thereby nonsingular. Thus, \(i\in {\mathcal {K}}_0^{\mathrm{non}}\), which means \({\mathcal {K}}_0^{\mathrm{sin}}=\emptyset \).

Necessity: Assume without loss of generality that \(M^{{\mathcal {G}}_0}\) is in the normal form. Any irreducible diagonal block \(M_j^{{\mathcal {G}}_0}\) of \(M^{{\mathcal {G}}_0}\) is either an irreducible diagonal block \(M_i\) of M, or a principal submatrix of that. For the former, \(M_j^{{\mathcal {G}}_0}\) is nonsingular since \({\mathcal {K}}_0^{\mathrm{sin}}=\emptyset \). For the latter, \(M_j^{{\mathcal {G}}_0}\) is nonsingular since \(M_i\) is an irreducible M-matrix. In summary, \(M^{{\mathcal {G}}_0}\) is nonsingular. \(\square \)

Proof of Lemma A3.

Proof

Case 1: Prove by contradiction that \(\lim _{\theta \rightarrow \theta _0}\mu _+\left( \theta \right) =\mu _+\left( \theta _0\right) \). Otherwise, since \(\mu _+\left( \theta \right) \) is bounded near \(\theta _0\), \(+\infty>\varlimsup _{\theta \rightarrow \theta _0}\mu _+\left( \theta \right)>\varliminf _{\theta \rightarrow \theta _0}\mu _+\left( \theta \right) >-\infty \). Let \(\lim _{i\rightarrow +\infty }\theta _i=\theta _0\) be a sequence such that

$$\begin{aligned} \lim _{i\rightarrow +\infty }\mu _+\left( \theta _i\right) =\varliminf _{\theta \rightarrow \theta _0}\mu _+\left( \theta \right) . \end{aligned}$$

By continuity of \(r\left( M-\lambda D\right) \),

$$\begin{aligned} 0= & {} \lim _{i\rightarrow +\infty }r\left[ M\left( \theta _i\right) -\mu _+\left( \theta _i\right) D\left( \theta _i\right) \right] =r\left[ M\left( \theta _0\right) -\lim _{i\rightarrow +\infty }\mu _+\left( \theta _i\right) D\left( \theta _0\right) \right] \\= & {} r\left[ M\left( \theta _0\right) -\varliminf _{\theta \rightarrow \theta _0}\mu _+\left( \theta \right) D\left( \theta _0\right) \right] . \end{aligned}$$

So \(\varliminf _{\theta \rightarrow \theta _0}\mu _+\left( \theta \right) \in R\left( M|D\right) \left( \theta _0\right) \). Similarly, \(\varlimsup _{\theta \rightarrow \theta _0}\mu _+\left( \theta \right) \in R\left( M|D\right) \left( \theta _0\right) \). Since \(\varliminf _{\theta \rightarrow \theta _0}\mu _+\left( \theta \right) \ne \varlimsup _{\theta \rightarrow \theta _0}\mu _+\left( \theta \right) \), the only possibility is that

$$\begin{aligned} \mu _+\left( \theta _0\right) =\varlimsup _{\theta \rightarrow \theta _0}\mu _+\left( \theta \right) >\varliminf _{\theta \rightarrow \theta _0}\mu _+\left( \theta \right) =\lim _{i\rightarrow +\infty }\mu _+\left( \theta _i\right) =\mu _-\left( \theta _0\right) . \end{aligned}$$

For i large enough, \(\mu _+\left( \theta _i\right) <\left[ \mu _+\left( \theta _0\right) +\mu _-\left( \theta _0\right) \right] /2=:{\overline{\mu }}\left( \theta _0\right) \). By Corollary A1, \(r\left[ M\left( \theta _0\right) -{\overline{\mu }}\left( \theta _0\right) D\left( \theta _0\right) \right] >0\) since \(\mu _-\left( \theta _0\right)<{\overline{\mu }}\left( \theta _0\right) <\mu _+\left( \theta _0\right) \), and for i large enough, \(r\left[ M\left( \theta _i\right) -{\overline{\mu }}\left( \theta _0\right) D\left( \theta _i\right) \right] <0\) since \({\overline{\mu }}\left( \theta _0\right) >\mu _+\left( \theta _i\right) \). By the continuity of \(r\left( M-\lambda D\right) \),

$$\begin{aligned} 0\ge \lim _{i\rightarrow +\infty }r\left[ M\left( \theta _i\right) -{\overline{\mu }}\left( \theta _0\right) D\left( \theta _i\right) \right] =r\left[ M\left( \theta _0\right) -{\overline{\mu }}\left( \theta _0\right) D\left( \theta _0\right) \right] >0, \end{aligned}$$

conflicts. Thus, \(\mu _+\left( \theta \right) \) is continuous, and similarly, \(\mu _-\left( \theta \right) \) is continuous.

Case 2: Similar as case 1. \(\square \)

Proof of Lemma A4.

Proof

\(\forall \lambda \in \varLambda \left( B|D\right) \), \(\exists v=\left( v_1,v_2,\cdots ,v_G\right) \) such that \(v\left( B-\lambda D\right) =0\). Prove by contradiction that \(\exists i_1\notin {\mathcal {G}}_0\) such that \(|v_{i_1}|=\max _{i'\in {\mathcal {G}}}|v_{i'}|\). Otherwise, \(|v_{i_2}|=\max _{i'\in {\mathcal {G}}}|v_{i'}|\) for some \(i_2\in {\mathcal {G}}_0\). Because \(B^{{\mathcal {G}}_0}\) is irreducible, there exists a path \(i_2={\widehat{i}}_1,{\widehat{i}}_2,\cdots ,{\widehat{i}}_a=j_0\in {\mathcal {G}}_0\) such that \(b_{{\widehat{i}}_{a'+1},{\widehat{i}}_{a'}}>0\) \(\forall a'\in \left[ 1,a-1\right] \). Because \(d_j=0\) and \(|b_{j,j}|\ge |b_{\cdot ,j}|\) \(\forall j\in {\mathcal {G}}_0\), by consecutively vanishing components \({\widehat{i}}_1,{\widehat{i}}_2,\cdots ,{\widehat{i}}_{a}\) of \(v\left( B-\lambda D\right) \), \(|b_{{\widehat{i}}_{a'},{\widehat{i}}_{a'}}|=|b_{\cdot ,{\widehat{i}}_{a'}}|\) and \(|v_{{\widehat{i}}_{a'}}|=\max _{i'\in {\mathcal {G}}}|v_{i'}|\) \(\forall a'\in \left[ 1,a\right] \). Since \(|b_{j_0,j_0}|>\sum _{i\in {\mathcal {G}}_0{\setminus }\left\{ j_0\right\} }|b_{i,j_0}|\), \(\exists i_1\notin {\mathcal {G}}_0\) such that \(b_{i_1,j_0}\ne 0\). So \(|v_{i_1}|=\max _{i'\in {\mathcal {G}}}|v_{i'}|\), conflicts.

Since component \(i_1\) of \(v\left( B-\lambda D\right) \) vanishes, \(v_{i_1}\left( \lambda d_{i_1}-b_{i_1,i_1}\right) =\sum _{i\ne i_1}v_ib_{i,i_1}\). Thus,

$$\begin{aligned}&|\lambda - b_{i_1,i_1}/d_{i_1}|=\left| \left( \sum _{i\ne i_1}\frac{v_i}{v_{i_1}}b_{i,i_1}\right) \Bigg / d_{i_1}\right| \le \left( \sum _{i\ne i_1}\left| \frac{v_i}{v_{i_1}}b_{i,i_1}\right| \right) \Bigg / |d_{i_1}|\\&\le \left( \sum _{i\ne i_1}\left| b_{i,i_1}\right| \right) \Bigg / |d_{i_1}|=|b_{\cdot ,i_1}|/|d_{i_1}|. \end{aligned}$$

Therefore, \(\lambda \in O\left( b_{i_1,i_1}/d_{i_1},|b_{\cdot ,i_1}|/|d_{i_1}|\right) \subset {\mathcal {O}}\left( B|D\right) \). This is statement 1.

Let \(B^{\epsilon }=\left( b^{\epsilon }_{i,j}\right) _{G\times G}\) for \(\epsilon \in \left[ 0,1\right] \). \(b^{\epsilon }_{i,j}=\epsilon b_{i,j}\) for \(j\notin {\mathcal {G}}_0\) and \(i\ne j\); otherwise, \(b^{\epsilon }_{i,j}=b_{i,j}\). \(B^{\epsilon }\) satisfies conditions in statement 1. Define \({\mathcal {G}}_+^0:=\left\{ j|j\in {\mathcal {G}},d_j>0,b_{j,j}=0\right\} \) and \({\mathcal {G}}_-^0:=\left\{ j|j\in {\mathcal {G}},d_j<0,b_{j,j}=0\right\} \). For \(\epsilon =0\), \(\varLambda \left( B^\epsilon |D\right) =\left\{ b_{j,j}/d_j|j\notin {\mathcal {G}}_0\right\} \). For \(\epsilon <1\),

$$\begin{aligned}&\bigcup _{j\in {\mathcal {G}}_+^0\cup {\mathcal {G}}_-^0}O\left( b_{j,j}/d_j,\epsilon |b_{\cdot ,j}|/d_j\right) \equiv \left\{ 0\right\} ,\\&\left[ \bigcup _{j\in {\mathcal {G}}_+{\setminus } {\mathcal {G}}_+^0}O\left( b_{j,j}/d_j,\epsilon |b_{\cdot ,j}|/d_j\right) \right] \cap \left[ \bigcup _{j\in {\mathcal {G}}_-{\setminus } {\mathcal {G}}_-^0}O\left( b_{j,j}/d_j,\epsilon |b_{\cdot ,j}|/d_j\right) \right] =\emptyset . \end{aligned}$$

By statement 1 and the continuity of \(\varLambda \left( B^{\epsilon }|D\right) \) on \(\epsilon \),

$$\begin{aligned}&m\left( D\right) +|{\mathcal {G}}_-^0|\le \sum _{\lambda \in \left[ \varLambda \cap {\mathcal {O}}_+\right] \left( B|D\right) }c\left( \lambda |B|D\right) ,\\&n\left( D\right) +|{\mathcal {G}}_+^0|\le \sum _{\lambda \in \left[ \varLambda \cap {\mathcal {O}}_-\right] \left( B|D\right) }c\left( \lambda |B|D\right) . \end{aligned}$$

This is statement 2. \(\square \)

Proof of Lemma A5.

Proof

By Lemma A4, \(\sum _{\lambda \in \left[ \varLambda \cap {\mathcal {O}}_+\right] \left( T|D\right) }c\left( \lambda |T|D\right) \ge m\left( D\right) \). \(\left[ \varLambda _-\cap {\mathcal {O}}_+\right] \left( T|D\right) =\emptyset \) and \(\sum _{\lambda \in \varLambda \left( T|D\right) }c\left( \lambda |T|D\right) =m\left( D\right) +n\left( D\right) \), so \(n\left( T|D\right) \le n\left( D\right) \). Similarly, \(m\left( T|D\right) \le m\left( D\right) \). Thus, if both cases 1 and 2 fail, then \(m\left( T|D\right) < m\left( D\right) \) and \(n\left( T|D\right) < n\left( D\right) \). So at least one of the three cases happens. Obviously, case 3 cannot happen simultaneously with any of cases 1 and 2. Because \(0\in \varLambda \left( T|D\right) \), cases 1 and 2 cannot happen simultaneously. In summary, exact one of the three cases happens. By Lemma A4, \(\varLambda _0\left( T|D\right) \subset {\mathcal {O}}\left( T|D\right) \). So \(\varLambda _0\left( T|D\right) \subset {\mathcal {O}}\left( T|D\right) \cap \left\{ z\in {\mathbb {C}}|\mathfrak {R}\left( z\right) =0\right\} =\left\{ 0\right\} \). \(\square \)

Proof of Lemma A6.

Proof

Case 1: Starting from case 1 in Lemma A5, \(m\left( T|D\right) =m\left( D\right) \). \(T^{{\mathcal {G}}_0}\) is a nonsingular M-matrix. So \(\det \left( T^{{\mathcal {G}}_0}\right) >0\). For \(0<\lambda <\min _{\lambda '\in \varLambda _+\left( T|D\right) }\mathfrak {R}\left( \lambda '\right) \),

$$\begin{aligned} \det \left( T-\lambda D\right)= & {} \det \left( T^{{\mathcal {G}}_0}\right) \prod _{i\notin {\mathcal {G}}_0}\left( -d_i\right) \left( \lambda -\lambda _i\right) \\= & {} \det \left( T^{{\mathcal {G}}_0}\right) \prod _{i\notin {\mathcal {G}}_0}\left( -1\right) ^{m\left( D\right) }|d_i|\left( -1\right) ^{m\left( T|D\right) }|\lambda -\lambda _i|\\= & {} \det \left( T^{{\mathcal {G}}_0}\right) \prod _{i\notin {\mathcal {G}}_0}|d_i||\lambda -\lambda _i|>0, \end{aligned}$$

where \(\lambda _i\) are the roots of \(\det \left( T-\lambda D\right) =0\). Moreover, since T is an irreducible M-matrix, \(\varXi \left( T\right) >0\) because it is the product of nondominant eigenvalues of M-matrix T. So for \(\lambda >0\) small enough, \(\varXi \left( T-\lambda D\right) >0\). In conclusion, \(r\left( T-\lambda D\right) =\det \left( T-\lambda D\right) /\varXi \left( T-\lambda D\right) >0\). By Lemma A1, if \(m\left( D\right) >0\), \(0<\lambda <\mu _+\left( T|D\right) \). Since \(r\left( T\right) =0\), \(\mu _-\left( T|D\right) =0\). Finally, \(c\left( \mu _{\pm }|T|D\right) =1\) by Lemma A1. Together with \(\varLambda _0\subset \left\{ 0\right\} \) by Lemma A5, there is \(n\left( Z|D\right) =n\left( D\right) -1\),

Case 2: Similar as case 1.

Case 3: Starting from case 3 in Lemma A5, \(m\left( T|D\right) <m\left( D\right) \) and \(n\left( T|D\right) <n\left( D\right) \). Because \(c\left( 0|T|D\right) \le 2\) by Lemma A1, the only possibility is \(m\left( T|D\right) =m\left( D\right) -1\), \(n\left( T|D\right) =n\left( D\right) -1\), and \(\mu _{\pm }\left( T|D\right) =0\). \(\square \)

Proof of Theorem A1.

Proof

Case 1: Starting from case 1 in Lemma A5, \(m\left( T|D\right) =m\left( D\right) \). \(T_i\) is irreducible and diagonally dominant in columns, so \(T_i\) is singular iff it has vanishing column sums. Also, since \(T^{{\mathcal {G}}_0}\) is irreducible, it is either an irreducible block of T, or a principal submatrix of that. As a result, singular \(T_i\) satisfies all conditions in Lemma A6. So there are three types of singular \(T_i\).

  1. 1.

    \(m\left( T_i|D_i\right) =m\left( D_i\right) \), \(n\left( T_i|D_i\right) =n\left( D_i\right) -1\), \(\mu _-\left( T_i|D_i\right) =0\). If \(m\left( D_i\right) >0\), \(\mu _+\left( T_i|D_i\right) >0\).

  2. 2.

    \(m\left( T_i|D_i\right) =m\left( D_i\right) -1\), \(n\left( T_i|D_i\right) =n\left( D_i\right) \), \(\mu _+\left( T_i|D_i\right) =0\). If \(n\left( D_i\right) >0\), \(\mu _-\left( T_i|D_i\right) <0\).

  3. 3.

    \(m\left( T_i|D_i\right) =m\left( D_i\right) -1\), \(n\left( T_i|D_i\right) =n\left( D_i\right) -1\), \(\mu _{\pm }\left( T_i|D_i\right) =0\).

Since \(m\left( T|D\right) =m\left( D\right) \), only type 1 can happen. By Lemma A1, \(r\left( T_i-\lambda D_i\right) >0\) for \(0=\mu _-\left( T_i|D_i\right)<\lambda <\mu _+\left( T_i|D_i\right) \) if \(m\left( D_i\right) >0\); otherwise, \(r\left( T_i-\lambda D_i\right) >0\) for \(0=\mu _-\left( T_i|D_i\right) <\lambda \). On the other hand, \(r\left( T_i-\lambda D_i\right) >0\) for nonsingular \(T_i\) and \(\lambda >0\) small enough. In summary, \(r\left( T-\lambda D\right) >0\) for \(\lambda >0\) small enough. Because \(T^{{\mathcal {G}}_0}\) is nonsingular, by Corollary A1, \(\mu _+\left( T|D\right)>\lambda >0\) if \(m\left( D\right) >0\). Finally, \(\mu _-\left( T|D\right) =0\) since \(r\left( T\right) =0\).

Case 2: Similar as case 1.

Case 3: Starting from case 3 in Lemma A5, \(m\left( T|D\right) <m\left( D\right) \) and \(n\left( T|D\right) <n\left( D\right) \). If there exists singular \(T_i\) of type 3, then by Lemma A1, \(r\left( T_i-\lambda D_i\right) <0\) for \(\lambda \ne 0\), thereby \(r\left( T-\lambda D\right) <0\) for \(\lambda \ne 0\). Thus, \(\mu _{\pm }\left( T|D\right) =0\) by Corollary A1. Otherwise, by \(m\left( T|D\right) <m\left( D\right) \), there exists singular \(T_i\) of type 2. By Lemma A1, \(r\left( T_i-\lambda D_i\right) <0\) for \(\lambda >\mu _+\left( T_i|D_i\right) =0\), thereby \(r\left( T-\lambda D\right) <0\) for \(\lambda >0\). Similarly, by \(n\left( T|D\right) <n\left( D\right) \), there exists singular \(T_i\) of type 1, thereby \(r\left( T-\lambda D\right) <0\) for \(\lambda <0\). In summary, \(r\left( T-\lambda D\right) <0\) for \(\lambda \ne 0\). Thus, \(\mu _{\pm }\left( T|D\right) =0\) by Corollary A1. \(\square \)

Proof of Theorem A2.

Proof

By Lemma A3, \(\mu _{\pm }\left( \theta \right) \) are continuous. If \(\mu _+\left( \theta _0\right) >\mu _-\left( \theta _0\right) \), by continuity, \(\exists \delta >0\) such that \(\mu _+\left( \theta _1\right) >\mu _-\left( \theta _2\right) \) \(\forall \theta _1,\theta _2\in \left( \theta _0-\delta ,\theta _0+\delta \right) \). Therefore, either \(\mu _+\left( \theta \right) \equiv 0\) or \(\mu _-\left( \theta \right) \equiv 0\) in \(\left( \theta _0-\delta ,\theta _0+\delta \right) \). Thus, either \(\mu \left( \theta \right) \equiv \mu _-\left( \theta \right) \) or \(\mu \left( \theta \right) \equiv \mu _+\left( \theta \right) \) in \(\left( \theta _0-\delta ,\theta _0+\delta \right) \). Then \(\mu \left( \theta \right) \) is continuous at \(\theta _0\).

If \(\mu _{\pm }\left( \theta _0\right) =0\), then since \(\mu \in \{\mu _+,\mu _-\}\),

$$\begin{aligned} \mu \left( \theta _0\right) =\mu _{\pm }\left( \theta _0\right) =0=\lim _{\theta \rightarrow \theta _0}\mu _{\pm }\left( \theta \right) =\lim _{\theta \rightarrow \theta _0}\mu \left( \theta \right) . \end{aligned}$$

\(\square \)

Proof of Lemma A7.

Proof

First prove the case of irreducible Z.

  1. 1.

    Assume \(r\left( Z\right) =0\). Since Z is irreducible, \(\exists v>0\) such that \(vZ=0\). Thus, \(vZ^{\epsilon }=0\). Because \(Z^{\epsilon }\) is irreducible and \(v>0\), \(r(Z^{\epsilon })=0\).

  2. 2.

    Assume \(r\left( Z\right) \ne 0\). Prove by contradiction that \({{\,\mathrm{sgn}\,}}\left[ r\left( Z\right) \right] ={{\,\mathrm{sgn}\,}}\left[ r\left( Z^\epsilon \right) \right] \). Otherwise, by continuity, \(\exists \epsilon '>0\) such that \(r\left( Z^{\epsilon '}\right) =0\). By case 1, \(r\left( Z\right) =0\), conflicts.

If Z is reducible,

$$\begin{aligned}&{{\,\mathrm{sgn}\,}}\left[ r\left( Z\right) \right] ={{\,\mathrm{sgn}\,}}\left[ \min _{i\in {\mathcal {I}}}r\left( Z_i\right) \right] =\min _{i\in {\mathcal {I}}}{{\,\mathrm{sgn}\,}}\left[ r\left( Z_i\right) \right] \\&=\min _{i\in {\mathcal {I}}}{{\,\mathrm{sgn}\,}}\left[ r\left( Z^\epsilon _i\right) \right] ={{\,\mathrm{sgn}\,}}\left[ \min _{i\in {\mathcal {I}}}r\left( Z^\epsilon _i\right) \right] ={{\,\mathrm{sgn}\,}}\left[ r\left( Z^{\epsilon }\right) \right] . \end{aligned}$$

\(\square \)

Proof of Lemma A8.

Proof

Sufficiency: Because column sums of T vanish, the following three steps transform \(T^{{\bar{i}},{\bar{j}}}\) to \(T^{{\bar{j}},{\bar{j}}}\) for \(i>j\).

  1. 1.

    Sum all rows of \(T^{{\bar{i}},{\bar{j}}}\) except row j to row j.

  2. 2.

    Multiply row j by \(-1\).

  3. 3.

    Exchange row j with rows \(j+1,j+2,\cdots ,i-1\) one by one.

During which there are totally \(i-j\) changes of sign. So \(T^{{\bar{j}},{\bar{j}}}=\left( -1\right) ^{i-j}T^{{\bar{i}},{\bar{j}}}=\left( -1\right) ^{i+j}T^{{\bar{i}},{\bar{j}}}\) for \(i>j\). There are similar statements for \(i<j\) as well. Then component i of Tv satisfies

$$\begin{aligned} \sum _{j=1}^G t_{i,j}T^{{\bar{j}},{\bar{j}}}=\sum _{j=1}^G \left( -1\right) ^{i+j}t_{i,j}T^{{\bar{i}},{\bar{j}}}=\det \left( T\right) =0. \end{aligned}$$

Necessity: Because T is irreducible, its dominant eigenvalue 0 is simple, and the corresponding eigenvector space is of dimension 1. \(\square \)

Appendix C: Extension of Theorem 1

Theorem A3

For \(i\in \left[ 2,G-1\right] \), if \(\widehat{{\widetilde{H}}}\left( x\right) \) is continuous at \(x_i^*\), \(\lim _{x\rightarrow x_i^*}\frac{\widehat{{\widetilde{h}}}_{i,\cdot }\left( x\right) }{|x-x_i^*|}=+\infty \), and \(\lim _{x\rightarrow x_i^*}\frac{\widehat{{\widetilde{h}}}_{i,j}\left( x\right) }{\widehat{{\widetilde{h}}}_{i,\cdot }\left( x\right) }\) exists \(\forall j\ne i\), then:

  1. 1.

    There exists a single root \(\lambda _{\infty }\left( x\right) \) of \(\det \left[ \widehat{{\widetilde{H}}}\left( x\right) -\lambda A\left( x\right) \right] =0\) near \(x_i^*\) such that \(\widehat{{\widetilde{h}}}_{i,\cdot }\left( x_i^*\right) =\lim _{x\rightarrow x_i^*}\gamma \left( x_i^*-x\right) \lambda _{\infty }\left( x\right) \).

  2. 2.

    \({\mathbb {H}}_i:=\lim _{x\rightarrow x_i^*}\widehat{{\widetilde{H}}}\left( x\right) I_i\left[ 1/\widehat{{\widetilde{h}}}_{i,\cdot }\left( x\right) \right] \) satisfies that \(\forall \lambda \),

    $$\begin{aligned} \lim _{x\rightarrow x_i^*}p\left( x\right) \left( \lambda \right) =\det \left[ {\mathbb {H}}_i-\lambda A\left( x_i^*\right) \right] \Bigg /\left[ \prod _{i'\ne i}\gamma \left( x_i^*-x_{i'}^*\right) \right] , \end{aligned}$$

    where \(I_i\left[ 1/\widehat{{\widetilde{h}}}_{i,\cdot }\left( x\right) \right] \) is obtained by replacing the ith diagonal element of the identity matrix by \(1/\widehat{{\widetilde{h}}}_{i,\cdot }\left( x\right) \), and for \(x\in \bigcup _{i'=1}^{G-1}\left( x_{i'+1}^*,x_{i'}^*\right) \),

    $$\begin{aligned} p\left( x\right) \left( \lambda \right) :=\det \left[ \widehat{{\widetilde{H}}}\left( x\right) -\lambda A\left( x\right) \right] \Bigg /\left\{ \left[ \lambda -\lambda _{\infty }\left( x\right) \right] \prod _{i'=1}^G\gamma \left( x-x_{i'}^*\right) \right\} . \end{aligned}$$
    (A2)
  3. 3.

    \(\lim _{x\rightarrow x_i^*}\mu \left( x\right) =\mu _i:=\mu \left[ {\mathbb {H}}_i|A\left( x_i^*\right) \right] \).

Under the assumption of Theorem A3, it is possible that \(\widehat{{\widetilde{h}}}_{i,\cdot }\left( x_i^*\right) =0\). Then the characteristic polynomial of GEs degenerates, i.e. \(\det \left[ \widehat{{\widetilde{H}}}\left( x_i^*\right) -\lambda A\left( x_i^*\right) \right] \equiv 0\) \(\forall \lambda \in {\mathbb {C}}\). This explains the importance of irreducibility of \(\widehat{{\widetilde{H}}}\left( x\right) \), which promises \(\widehat{{\widetilde{h}}}_{i,\cdot }\left( x_i^*\right) >0\) in Theorem 1. By Theorem A1, \(\mu \left( \widehat{{\widetilde{H}}}|A\right) \left( x\right) \) is still well-defined for \(x\in \bigcup _{i=1}^{G-1}\left( x_{i+1}^*,x_{i}^*\right) \), and we define \(\mu \left( x\right) :=\mu \left( \widehat{{\widetilde{H}}}|A\right) \left( x\right) \). Nevertheless, \(\mu \left( x_i^*\right) \) no longer equals to \(\mu \left( \widehat{{\widetilde{H}}}|A\right) \left( x_i^*\right) \).

Proof

For \(x\in \bigcup _{i'=1}^{G-1}\left( x_{i'+1}^*,x_{i'}^*\right) \), \(A\left( x\right) \) is nonsingular, thereby

$$\begin{aligned} \det \left[ \widehat{{\widetilde{H}}}\left( x\right) -\lambda A\left( x\right) \right] =\det \left[ \widehat{{\widetilde{H}}}\left( x\right) A^{-1}\left( x\right) -\lambda I\right] \det \left[ A\left( x\right) \right] , \end{aligned}$$

and the GEs of \(\widehat{{\widetilde{H}}}\left( x\right) \) on \(A\left( x\right) \) are the eigenvalues of \(\widehat{{\widetilde{H}}}\left( x\right) A^{-1}\left( x\right) \). \(\forall \lambda \),

$$\begin{aligned} \lim _{x\rightarrow x_i^*}\det \left[ \gamma \left( x_i^*-x\right) \widehat{{\widetilde{H}}}\left( x\right) A^{-1}\left( x\right) -\lambda I\right] =\left( -1\right) ^G\lambda ^{G-1}\left[ \lambda -\widehat{{\widetilde{h}}}_{i,\cdot }\left( x_i^*\right) \right] , \end{aligned}$$

so as \(x\rightarrow x_i^*\), \(G-1\) eigenvalues (count multiplicity) of \(\gamma \left( x_i^*-x\right) \widehat{{\widetilde{H}}}\left( x\right) A^{-1}\left( x\right) \) tend to 0, and one tends to \(\widehat{{\widetilde{h}}}_{i,\cdot }\left( x_i^*\right) \). The eigenvalues of \(\gamma \left( x_i^*-x\right) \widehat{{\widetilde{H}}}\left( x\right) A^{-1}\left( x\right) \) are just those of \(\widehat{{\widetilde{H}}}\left( x\right) A^{-1}\left( x\right) \) multiplying \(\gamma \left( x_i^*-x\right) \), so we have statement 1.

Multiply both sides of Eq. (A2) by \(\left[ \lambda -\lambda _{\infty }\left( x\right) \right] \prod _{i'=1}^G\gamma \left( x-x_{i'}^*\right) /\widehat{{\widetilde{h}}}_{i,\cdot }\left( x\right) \).

$$\begin{aligned}&\left[ \prod _{i'\ne i}\gamma \left( x-x_{i'}^*\right) \right] \gamma \left( x-x_i^*\right) \left[ \lambda -\lambda _\infty \left( x\right) \right] /\widehat{{\widetilde{h}}}_{i,\cdot }\left( x\right) P\left( x\right) \left( \lambda \right) \\&\quad =\det \left\{ \left[ \widehat{{\widetilde{H}}}\left( x\right) -\lambda A\left( x\right) \right] I_i\left[ 1/\widehat{{\widetilde{h}}}_{i,\cdot }\left( x\right) \right] \right\} . \end{aligned}$$

Because \({\mathbb {H}}_i:=\lim _{x\rightarrow x_i^*}\widehat{{\widetilde{H}}}\left( x\right) I_i\left[ 1/\widehat{{\widetilde{h}}}_{i,\cdot }\left( x\right) \right] \), \(\lim _{x\rightarrow x_i^*}\gamma \left( x_i^*-x\right) /\widehat{{\widetilde{h}}}_{i,\cdot }\left( x\right) =0\), and \(\lim _{x\rightarrow x_i^*}\gamma \left( x_i^*-x\right) \lambda _{\infty }\left( x\right) =\widehat{{\widetilde{h}}}_{i,\cdot }\left( x_i^*\right) \), for any fixed \(\lambda \),

$$\begin{aligned}&\left[ \prod _{i'\ne i}\gamma \left( x_i^*-x_{i'}^*\right) \right] \lim _{x\rightarrow x_i^*}P\left( x\right) \left( \lambda \right) \\&\quad =\lim _{x\rightarrow x_i^*}\left[ \prod _{i'\ne i}\gamma \left( x-x_{i'}^*\right) \right] \gamma \left( x-x_i^*\right) \left[ \lambda -\lambda _\infty \left( x\right) \right] /\widehat{{\widetilde{h}}}_{i,\cdot }\left( x\right) P\left( x\right) \left( \lambda \right) \\&\quad =\lim _{x\rightarrow x_i^*}\det \left\{ \left[ \widehat{{\widetilde{H}}}\left( x\right) -\lambda A\left( x\right) \right] I_i\left[ 1/\widehat{{\widetilde{h}}}_{i,\cdot }\left( x\right) \right] \right\} =\det \left[ {\mathbb {H}}_i-\lambda A\left( x_i^*\right) \right] . \end{aligned}$$

This is statement 2.

The trace of \(\widehat{{\widetilde{H}}}\left( x\right) A^{-1}\left( x\right) \) tends to \(+\infty \) as \(x\rightarrow x_i^*-\) because

$$\begin{aligned} \lim _{x\rightarrow x_i^*-}\frac{\widehat{{\widetilde{h}}}_{i,\cdot }\left( x\right) }{\gamma \left( x_i^*-x\right) }=+\infty . \end{aligned}$$

Since the GEs are the eigenvalues of \(\widehat{{\widetilde{H}}}\left( x\right) A^{-1}\left( x\right) \) for \(x\in \bigcup _{i'=1}^{G-1}\left( x_{i'+1}^*,x_{i'}^*\right) \), the sum of all GEs is the trace of \(\widehat{{\widetilde{H}}}\left( x\right) A^{-1}\left( x\right) \), thereby tending to \(+\infty \) as \(x\rightarrow x_i^*-\). By statement 2, GEs other than \(\lambda _{\infty }\left( x\right) \) have finite limits as \(x\rightarrow x_i^*\). So \(\lim _{x\rightarrow x_i^*-}\lambda _{\infty }\left( x\right) =+\infty \). Similarly, \(\lim _{x\rightarrow x_i^*+}\lambda _{\infty }\left( x\right) =-\infty \). Because \(m[A(x_i^*)],n[A(x_i^*)]>0\), some diagonal element of \(\widehat{{\widetilde{H}}}\left( x\right) -\lambda _{\infty }\left( x\right) A\left( x\right) \) tends to \(-\infty \) as \(x\rightarrow x_i^*\). By the Gershgorin circle theorem (Gershgorin 1931), \(\lim _{x\rightarrow x_i^*}r\left[ \widehat{{\widetilde{H}}}\left( x\right) -\lambda _{\infty }\left( x\right) A\left( x\right) \right] =-\infty \). Thus, \(\mu \left( x\right) \ne \lambda _{\infty }\left( x\right) \) for x near \(x_i^*\). By statement 2, the roots of \(\det \left[ \widehat{{\widetilde{H}}}\left( x\right) -\lambda A\left( x\right) \right] =0\) except \(\lambda _\infty \left( x\right) \) tend to the \(G-1\) roots of \(\det \left[ {\mathbb {H}}_i-\lambda A\left( x_i^*\right) \right] \) as \(x\rightarrow x_i^*\), thereby continuous at \(x_i^*\) and bounded near \(x_i^*\); thus, \(-\infty<\varliminf _{x\rightarrow x_i^*}\mu \left( x\right) \le \varlimsup _{x\rightarrow x_i^*}\mu \left( x\right) <+\infty \). Let \(\lim _{j\rightarrow +\infty }y_j=x_i^*\) be a sequence such that

$$\begin{aligned} \lim _{j\rightarrow +\infty }\mu \left( y_j\right) =\varlimsup _{x\rightarrow x_i^*}\mu \left( x\right) . \end{aligned}$$

For j large enough, \(\widehat{{\widetilde{h}}}_{i,\cdot }\left( y_j\right) >0\) because \(\lim _{x\rightarrow x_i^*}\frac{\widehat{{\widetilde{h}}}_{i,\cdot }\left( x\right) }{|x-x_i^*|}=+\infty \). By Lemma A7,

$$\begin{aligned}&r\left[ \widehat{{\widetilde{H}}}\left( y_j\right) -\mu \left( y_j\right) A\left( y_j\right) \right] =0\\&\quad \Rightarrow r\left\{ \left[ \widehat{{\widetilde{H}}}\left( y_j\right) -\mu \left( y_j\right) A\left( y_j\right) \right] I_i\left[ 1/\widehat{{\widetilde{h}}}_{i,\cdot }\left( y_j\right) \right] \right\} =0. \end{aligned}$$

As a result,

$$\begin{aligned}&r\left[ {\mathbb {H}}_i-\varlimsup _{x\rightarrow x_i^*}\mu \left( x\right) A\left( x_i^*\right) \right] \\&\quad =\lim _{j\rightarrow +\infty }r\left\{ \left[ \widehat{{\widetilde{H}}}\left( y_j\right) -\mu \left( y_j\right) A\left( y_j\right) \right] I_i\left[ 1/\widehat{{\widetilde{h}}}_{i,\cdot }\left( y_j\right) \right] \right\} =0. \end{aligned}$$

Thus, \(\varlimsup _{x\rightarrow x_i^*}\mu \left( x\right) \) is a DGE of \({\mathbb {H}}_i\) on \(A\left( x_i^*\right) \), and so is \(\varliminf _{x\rightarrow x_i^*}\mu \left( x\right) \). Prove by contradiction that \(\varlimsup _{x\rightarrow x_i^*}\mu \left( x\right) =\varliminf _{x\rightarrow x_i^*}\mu \left( x\right) \). Otherwise, \(\varlimsup _{x\rightarrow x_i^*}\mu \left( x\right) \) and \(\varliminf _{x\rightarrow x_i^*}\mu \left( x\right) \) are the only two DGEs of \({\mathbb {H}}_i\) on \(A\left( x_i^*\right) \) by Corollary A1, and one must be 0 by Theorem A1. Assume without loss of generality that \(0=\varlimsup _{x\rightarrow x_i^*}\mu \left( x\right) >\varliminf _{x\rightarrow x_i^*}\mu \left( x\right) \). Let \({\bar{\mu }}:=\varliminf _{x\rightarrow x_i^*}\mu \left( x\right) /2<0\). By Corollary A1, \(r\left[ {\mathbb {H}}_i-{\bar{\mu }} A\left( x_i^*\right) \right] >0\) since \(\varliminf _{x\rightarrow x_i^*}\mu \left( x\right)<{\bar{\mu }}<\varlimsup _{x\rightarrow x_i^*}\mu \left( x\right) \). For j large enough, \({\bar{\mu }}<\mu \left( y_j\right) \). Then

$$\begin{aligned} r\left\{ \left[ \widehat{{\widetilde{H}}}\left( y_j\right) -{\bar{\mu }}A\left( y_j\right) \right] I_i\left[ 1/\widehat{{\widetilde{h}}}_{i,\cdot }\left( y_j\right) \right] \right\} <0 \end{aligned}$$

by Corollary A1 since \({\bar{\mu }}<0\) and \({\bar{\mu }}<\mu (y_j)\). As \(j\rightarrow +\infty \), \(r\left[ {\mathbb {H}}_i-{\bar{\mu }} A\left( x_i^*\right) \right] \le 0\), conflicts. Therefore,

$$\begin{aligned} \varlimsup _{x\rightarrow x_i^*}\mu \left( x\right) =\varliminf _{x\rightarrow x_i^*}\mu \left( x\right) . \end{aligned}$$

Define \(\mu \left( x_i^*\right) :=\lim _{x\rightarrow x_i^*}\mu \left( x\right) \). Then, \(\mu \left( x\right) \) is continuous at \(x_i^*\).

Now we show that \(\mu \left( x_i^*\right) =\mu _i\). If \(\mu _i=0\), then by Definition A4, 0 is the only DGE of \({\mathbb {H}}_i\) on \(A\left( x_i^*\right) \). Then \(\mu \left( x_i^*\right) =0\) because \(\mu \left( x_i^*\right) \) is a DGE. Otherwise, assume without loss of generality that \(\mu _i>0\). By Theorem A1, \(m\left[ {\mathbb {H}}_i|A\left( x_i^*\right) \right] =m\left[ A\left( x_i^*\right) \right] =i-1\). By continuity, \(\exists \delta >0\) such that for \(x\in \left( x_i^*-\delta ,x_i^*\right) \), the \(i-1\) roots of \(\det \left[ {\mathbb {H}}_i-\lambda A\left( x_i^*\right) \right] =0\) with positive real parts at \(x_i^*\) still have positive real parts at x. By \(\lim _{x\rightarrow x_i^*-}\lambda _\infty \left( x\right) =+\infty \), it is possible to decrease \(\delta \) such that \(\lambda _\infty \left( x\right) >0\), thereby \(m\left( \widehat{{\widetilde{H}}}|A\right) \left( x\right) \ge i\) for \(x\in \left( x_i^*-\delta ,x_i^*\right) \). Conversely, for \(x\in \left( x_{i+1}^*,x_i^*\right) \), \(m\left( \widehat{{\widetilde{H}}}|A\right) \left( x\right) \le m\left[ A\left( x\right) \right] =i\) by Theorem A1. Therefore, \(m\left( \widehat{{\widetilde{H}}}|A\right) \left( x\right) =m\left[ A\left( x\right) \right] =i\). By Theorem A1, \(\mu \left( x\right) >0\) for \(x\in \left( x_i^*-\delta ,x_i^*\right) \). Prove by contradiction that \(\mu \left( x_i^*\right) =\mu _i\). Otherwise, \(\mu \left( x_i^*\right) =0\). By continuity, the i roots of \(\det \left[ \widehat{{\widetilde{H}}}\left( x\right) -\lambda A\left( x\right) \right] =0\) with positive real parts in \(\left( x_i^*-\delta ,x_i^*\right) \), i.e. the \(i-1\) roots of \(\det \left[ {\mathbb {H}}_i-\lambda A\left( x_i^*\right) \right] =0\) with positive real parts at \(x_i^*\) and \(\lambda _{\infty }\left( x\right) \), are different from \(\mu \left( x\right) \) for \(x\in \left( x_i^*-\delta ',x_i^*\right) \) with \(0<\delta '<\delta \) small enough. Thus, \(m\left( \widehat{{\widetilde{H}}}|A\right) \left( x\right) \ge i+1>i=m\left[ A\left( x\right) \right] \), conflicts. Thus, we have statement 3. \(\square \)

Similar to Corollary 1, we have Corollary A2.

Corollary A2

Assume \(\widehat{{\widetilde{H}}}\left( x\right) \) is continuous in \(\left( x_G^*,x_1^*\right) \), \(\lim _{x\rightarrow x_i^*}\frac{\widehat{{\widetilde{h}}}_{i,\cdot }\left( x\right) }{|x-x_i^*|}=+\infty \) \(\forall i\in \left[ 2,G-1\right] \), and \(\lim _{x\rightarrow x_i^*}\frac{\widehat{{\widetilde{h}}}_{i,j}\left( x\right) }{\widehat{{\widetilde{h}}}_{i,\cdot }\left( x\right) }\) exists \(\forall j\ne i\). Let \(\mu \left( x_i^*\right) :=\mu _i\) for \(i\in \left[ 2,G-1\right] \). Then, \(\mu \left( x\right) \) is continuous in \(\left( x_G^*,x_1^*\right) \).

Remark A1

Assume \(\widehat{{\widetilde{h}}}_{i,\cdot }\left( x_i^*\right) >0\). Then the characteristic polynomial of GEs is nondegenerate. Since \(\left[ \widehat{{\widetilde{H}}}\left( x_i^*\right) -\lambda A\left( x_i^*\right) \right] I_i\left[ 1/\widehat{{\widetilde{h}}}_{i,\cdot }\left( x\right) \right] ={\mathbb {H}}_i-\lambda A\left( x_i^*\right) \), we have \(\det \left[ {\mathbb {H}}_i-\lambda A\left( x_i^*\right) \right] =\det \left[ \widehat{{\widetilde{H}}}\left( x_i^*\right) -\lambda A\left( x_i^*\right) \right] /\widehat{{\widetilde{h}}}_{i,\cdot }\left( x\right) \). By Lemma A7, \(\forall \lambda \), \(r\left[ \widehat{{\widetilde{H}}}\left( x_i^*\right) -\lambda A\left( x_i^*\right) \right] =0\) iff \(r\left[ {\mathbb {H}}_i-\lambda A\left( x_i^*\right) \right] =0\). Thus, GEs and DGEs of \(\widehat{{\widetilde{H}}}\left( x_i^*\right) \) on \(A\left( x_i^*\right) \) are the same as those of \({\mathbb {H}}_i\) on \(A\left( x_i^*\right) \). So \(\mu \left( \widehat{{\widetilde{H}}}|A\right) \left( x_i^*\right) =\mu \left[ {\mathbb {H}}_i|A\left( x_i^*\right) \right] =\mu _i\). In summary, the statements in Theorem A3 are equivalent to those in Theorem 1 for \(\widehat{{\widetilde{h}}}_{i,\cdot }\left( x_i^*\right) >0\). Since \(\widehat{{\widetilde{h}}}_{i,\cdot }\left( x_i^*\right) >0\) for irreducible \(\widehat{{\widetilde{H}}}\left( x_i^*\right) \), Theorem A3 implies Theorem 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Ge, H. & Zhang, Y. Fluctuating-rate model with multiple gene states. J. Math. Biol. 81, 1099–1141 (2020). https://doi.org/10.1007/s00285-020-01538-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-020-01538-2

Keywords

Mathematics Subject Classification

Navigation