Skip to main content
Log in

The basic reproduction number \(R_0\) in time-heterogeneous environments

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

In the previous paper (Inaba in J Math Biol 65:309–348, 2012), we proposed a new (most biologically natural) definition of the basic reproduction number \(R_0\) for structured population in general time-heterogeneous environments based on the generation evolution operator. Using the mathematical definition for cone spectral radius, we show that our \(R_0\) is given by the spectral radius of the generation evolution operator in the time-state space. Then as far as we consider linear population dynamics, our \(R_0\) is a threshold value for population extinction and persistence in time-heterogeneous environments. Next we prove that even for nonlinear systems, our \(R_0\) plays a role of a threshold value for population extinction in time-heterogeneous environments. For periodic systems, we can show that supercritical condition \(R_0>1\) implies existence of positive periodic solution. Finally using the idea of \(R_0\) in time-heterogeneous environment, we examine existence and stability of periodic solution in the age-structured SIS epidemic model with time-periodic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aulbach B, Minh NV (1996) Nonlinear semigroups and the existence and stability of solutions of semilinear nonautonomous evolution equations. Abstr Appl Anal 1(4):351–380

    Article  MathSciNet  MATH  Google Scholar 

  • Bacaër N (2007) Approximation of the basic reproduction number \(R_0\) for vector-borne diseases with a periodic vector population. Bull Math Biol 69:1067–1091

    Article  MathSciNet  MATH  Google Scholar 

  • Bacaër N, Guernaoui S (2006) The epidemic threshold of vector-borne diseases with seasonality. J Math Biol 53:421–436

    Article  MathSciNet  MATH  Google Scholar 

  • Busenberg S, Iannelli M, Thieme HR (1991) Global behavior of an age-structured epidemic model. SIAM J Math Anal 22(4):1065–1080

    Article  MathSciNet  MATH  Google Scholar 

  • Busenberg SS, Iannelli M, Thieme H (1993) Dynamics of an age-structured epidemic model. In: Shan-Tao Liao, Yan-Qian Ye, Tong-Ren Ding (eds) Dynamical Systems, Nankai Series in Pure, Applied Mathematics and Theoretical Physics, vol 4. World Scientific, Singapore, pp 1–19

    Google Scholar 

  • Chicone C, Latushkin Y (1999) Evolution semigroups in dynamical systems and differential equations, mathematical surveys and monographs, vol 70. American Mathematical Society, Providence

    Book  MATH  Google Scholar 

  • Desch W, Schappacher W (1986) Linearized stability for nonlinear semigroups. In: Fabini A, Obrecht E (eds) Differential equations in Banach spaces, Lecturer Notes in Mathematics 1223. Springer, Berlin, pp 61–67

  • Diekmann O, Heesterbeek JAP, Metz JAJ (1990) On the definition and the computation of the basic reproduction ratio \(R_0\) in models for infectious diseases in heterogeneous populations. J Math Biol 28:365–382

    Article  MathSciNet  MATH  Google Scholar 

  • Diekmann O, Gyllenberg M, Metz JAJ, Thieme HR (1998) On the formulation and analysis of general deterministic structured population models I. Linear theory. J Math Biol 36:349–388

    Article  MathSciNet  MATH  Google Scholar 

  • Diekmann O, Heesterbeek JAP, Roberts MG (2010) The construction of next-generation matrices for compartmental epidemic models. J R Soc Interface 6 7(47):873–885

    Article  Google Scholar 

  • Diekmann O, Heesterbeek JAP, Britton T (2013) Mathematical tools for understanding infectious disease dynamics. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Feng Z, Huang W, Castillo-Chavez C (2005) Global behavior of a multi-group SIS epidemic model with age structure. J Differ Equ 218:292–324

    Article  MathSciNet  MATH  Google Scholar 

  • Gripenberg G (2015) On the definition of the cone spectral radius. Proc Am Math Soc 143:1617–1625

    Article  MathSciNet  MATH  Google Scholar 

  • Iannelli M, Kim MY, Park EJ (1999) Asymptotic behavior for an SIS epidemic model and its approximation. Nonlinear Anal 35:797–814

    Article  MathSciNet  MATH  Google Scholar 

  • Inaba H (2012a) On a new perspective of the basic reproduction number in heterogeneous environments. J Math Biol 65:309–348

    Article  MathSciNet  MATH  Google Scholar 

  • Inaba H (2012b) The Malthusian parameter and \(R_0\) for heterogeneous populations in periodic environments. Math Biosci Eng 9(2):313–346

    Article  MathSciNet  MATH  Google Scholar 

  • Inaba H (2017) Age-structured population dynamics in demography and epidemiology. Springer, Singapore

    Book  MATH  Google Scholar 

  • Krasnosel’skij MA, Lifshits Je A, Sobolev AV (1989) Positive linear systems—the method of positive operators. Helderman Verlag, Berlin

    Google Scholar 

  • Krein MG, Rutman MA (1948) Linear operators leaving invariant a cone in a Banach space. Usephi Mat Nauk 3:395 (in Russian): Am Math Soc Transl 10:199325 (1950) (in English)

  • Kuniya T, Inaba H (2013) Endemic threshold results for an age-structured SIS epidemic model with periodic parameters. J Math Anal Appl 402:477–492

    Article  MathSciNet  MATH  Google Scholar 

  • Kuniya T, Inaba H, Yang J (2018) Global behavior of SIS epidemic models with age structure and spatial heterogeneity. Jpn J Ind Appl Math 35:669–706

    Article  MathSciNet  MATH  Google Scholar 

  • Lang S (1993) Real and functional analysis, 3rd edn. Springer, New York

    Book  MATH  Google Scholar 

  • Liu JH, N’Guérékata GM, Minh NV (2008) Topics on stability and periodicity in abstract differential equations. World Scientific, New Jersey

    Book  MATH  Google Scholar 

  • Mallet-Paret J, Nussbaum RD (2002) Eigenvalues for a class of homogeneous cone maps arising from max-plus operator. Discrete Conti Dyn Syst 8(3):519–562

    Article  MathSciNet  MATH  Google Scholar 

  • Mallet-Paret J, Nussbaum RD (2010) Generalizing the Krein–Rutman theorem, measures of noncompactness and the fixed point index. J Fixed Point Theory Appl 7:103–143

    Article  MathSciNet  MATH  Google Scholar 

  • Thieme HR (2009) Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity. SIAM J Appl Math 70(1):188–211

    Article  MathSciNet  MATH  Google Scholar 

  • Thieme HR (2013) Eigenvectors and eigenfunctionals of homogeneous order-preserving maps. arXiv:1302.3905v1 [math.FA] 15 Feb

  • Thieme HR (2016) Spectral radii and Collatz–Wielandt numbers for homogeneous order-preserving maps and the monotone companion norm. In: de Jeu M, de Pagter B, van Gaans O, Veraar M (eds) Ordered structures and applications. Birkhaüser, Basel, pp 415–467

    Chapter  Google Scholar 

  • Thieme HR (2017) From homogeneous eigenvalue problems to two-sex population dynamics. J Math Biol 75:783–804

    Article  MathSciNet  MATH  Google Scholar 

  • Thieme HR (2018) Personal communication

  • van Neerven J (1996) The asymptotic behaviour of semigroups of linear operators, operator theory advances and applications, vol 88. Birkhäuser, Basel

    Google Scholar 

  • Webb GF (1972) Continuous nonlinear perturbations of linear accretive operators in Banach spaces. J Funct Anal 10:191–203

    Article  MathSciNet  MATH  Google Scholar 

  • Webb GF (1985) Theory of nonlinear age-dependent population dynamics. Marcel Dekker, New York

    MATH  Google Scholar 

  • Zhao X-Q (2003) Dynamical systems in population biology. Springer, New York

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This research is supported by Grant-in-Aid for Scientific Research (C) (No. 16K05266). I deeply thank Horst R. Thieme and an anonymous reviewer for their kind suggestions, which were very useful to improve the earlier manuscript. I thank Stuart Jenkinson, PhD, from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisashi Inaba.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inaba, H. The basic reproduction number \(R_0\) in time-heterogeneous environments. J. Math. Biol. 79, 731–764 (2019). https://doi.org/10.1007/s00285-019-01375-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-019-01375-y

Keywords

Mathematics Subject Classification

Navigation