Skip to main content
Log in

Derivation of a bacterial nutrient-taxis system with doubly degenerate cross-diffusion as the parabolic limit of a velocity-jump process

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

This paper is devoted to the justification of the macroscopic, mean-field nutrient taxis system with doubly degenerate cross-diffusion proposed by Leyva et al. (Phys A 392:5644–5662, 2013) to model the complex spatio-temporal dynamics exhibited by the bacterium Bacillus subtilis during experiments run in vitro. This justification is based on a microscopic description of the movement of individual cells whose changes in velocity (in both speed and orientation) obey a velocity jump process governed by a transport equation of Boltzmann type. For that purpose, the asymptotic method introduced by Hillen and Othmer (SIAM J Appl Math 61:751–775, 2000; SIAM J Appl Math 62:1222–1250, 2002) is applied, which consists of the computation of the leading order term in a regular Hilbert expansion for the solution to the transport equation, under an appropriate parabolic scaling and a first order perturbation of the turning rate of Schnitzer type (Schnitzer in Phys Rev E 48:2553–2568, 1993). The resulting parabolic limit equation at leading order for the bacterial cell density recovers the degenerate nonlinear cross diffusion term and the associated chemotactic drift appearing in the original system of equations. Although the bacterium B. subtilis is used as a prototype, the method and results apply in more generality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Notice that when the diffusion coefficient is constant, \(D_u \equiv 1 > 0\) (after normalizations), this rule implies that the bacterial response function should be \(\zeta = u\) and the chemotactic flux reads \(\varvec{J}_c = - u \chi (v) \nabla v\), recovering the standard Keller–Segel model (Keller and Segel 1971a, b).

References

  • Alt W (1980) Biased random walk models for chemotaxis and related diffusion approximations. J Math Biol 9(2):147–177

    Article  MathSciNet  MATH  Google Scholar 

  • Aronson DG (1980) Density-dependent interaction-diffusion systems. In: Stewart WE, Ray WH, Conley CC (eds) Dynamics and modelling of reactive systems (Proc. Adv. Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wisconsin, 1979), Publication of the Mathematics Research Center, University of Wisconsin, vol 44. Academic Press, New York, London, pp 161–176

  • Arouh S, Levine H (2000) Nutrient chemotaxis suppression of a diffusive instability in bacterial colony dynamics. Phys Rev E 62(1):1444–1447

    Article  Google Scholar 

  • Ben-Jacob E, Levine H (2006) Self-engineering capabilities of bacteria. J R Soc Interface 3(6):197–214

    Article  Google Scholar 

  • Ben-Jacob E, Cohen I, Levine H (2000) Cooperative self-organization of microorganisms. Adv Phys 49(4):395–554

    Article  Google Scholar 

  • Berg HC (1983) Random walks in biology. Princeton University Press, Princeton

    Google Scholar 

  • Berg HC, Brown DA (1972) Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239:500–504

    Article  Google Scholar 

  • Block SM, Segall JE, Berg HC (1983) Adaptation kinetics in bacterial chemotaxis. J Bacteriol 154(1):312–323

    Google Scholar 

  • Butanda JA, Málaga C, Plaza RG (2017) On the stabilizing effect of chemotaxis on bacterial aggregation patterns. Appl Math Nonlinear Sci 2(1):157–172

    Article  MathSciNet  MATH  Google Scholar 

  • Chalub FACC, Markowich PA, Perthame B, Schmeiser C (2004) Kinetic models for chemotaxis and their drift-diffusion limits. Monatsh Math 142(1–2):123–141

    Article  MathSciNet  MATH  Google Scholar 

  • Chalub F, Dolak-Struss Y, Markowich P, Oelz D, Schmeiser C, Soreff A (2006) Model hierarchies for cell aggregation by chemotaxis. Math Models Methods Appl Sci 16(7, suppl):1173–1197

    Article  MathSciNet  MATH  Google Scholar 

  • Codling EA, Hill NA, Pitchford JW, Simpson SD (2004) Random walk models for the movement and recruitment of reef fish larvae. Mar Ecol Prog Ser 279:215–224

    Article  Google Scholar 

  • Cohen I, Czirók A, Ben-Jacob E (1996) Chemotactic-based adaptive self organization during colonial development. Phys A 233(3–4):678–698

    Article  Google Scholar 

  • Dai S, Du Q (2016) Weak solutions for the Cahn–Hilliard equation with degenerate mobility. Arch Ration Mech Anal 219(3):1161–1184

    Article  MathSciNet  MATH  Google Scholar 

  • Ellis RS (1973) Chapman–Enskog–Hilbert expansion for a Markovian model of the Boltzmann equation. Commun Pure Appl Math 26(3):327–359

    Article  MathSciNet  MATH  Google Scholar 

  • Ellis RJ (2001) Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci 26(10):597–604

    Article  Google Scholar 

  • Erban R, Othmer HG (2004) From individual to collective behavior in bacterial chemotaxis. SIAM J Appl Math 65(2):361–391

    Article  MathSciNet  MATH  Google Scholar 

  • Feller W (1968) An introduction to probability theory and its applications, vol I, 3rd edn. Wiley, New York, London, Sydney

    MATH  Google Scholar 

  • Galanti M, Fanelli D, Piazza F (2016) Macroscopic transport equations in many-body systems from microscopic exclusion processes in disordered media: a review. Front Phys 4:33

    Article  Google Scholar 

  • Gilding BH, Kersner R (1996) A necessary and sufficient condition for finite speed of propagation in the theory of doubly nonlinear degenerate parabolic equations. Proc R Soc Edinb Sect A 126(4):739–767

    Article  MathSciNet  MATH  Google Scholar 

  • Golding I, Kozlovsky Y, Cohen I, Ben-Jacob E (1998) Studies of bacterial branching growth using reaction-diffusion models for colonial development. Phys A 260(3–4):510–554

    Article  Google Scholar 

  • Golse F, Lions PL, Bt Perthame, Sentis R (1988) Regularity of the moments of the solution of a transport equation. J Funct Anal 76(1):110–125

    Article  MathSciNet  MATH  Google Scholar 

  • Gurtin ME, MacCamy RC (1977) On the diffusion of biological populations. Math Biosci 33(1–2):35–49

    Article  MathSciNet  MATH  Google Scholar 

  • Habetler GJ, Matkowsky BJ (1975) Uniform asymptotic expansions in transport theory with small mean free paths, and the diffusion approximation. J Math Phys 16(4):846–854

    Article  MathSciNet  MATH  Google Scholar 

  • Hillen T (2003) Transport equations with resting phases. Eur J Appl Math 14(5):613–636

    Article  MathSciNet  MATH  Google Scholar 

  • Hillen T (2004) On the $L^2$-moment closure of transport equations: the Cattaneo approximation. Discrete Cont Dyn Syst Ser B 4(4):961–982

    Article  MathSciNet  MATH  Google Scholar 

  • Hillen T, Othmer HG (2000) The diffusion limit of transport equations derived from velocity-jump processes. SIAM J Appl Math 61(3):751–775

    Article  MathSciNet  MATH  Google Scholar 

  • Hillen T, Painter KJ (2013) Transport and anisotropic diffusion models for movement in oriented habitats. In: Lewis MA, Maini PK, Petrovskii SV (eds) Dispersal, individual movement and spatial ecology. Lecture notes in mathematics, vol 2071. Springer, Heidelberg, pp 177–222

  • Hillesdon AJ, Pedley TJ, Kessler JO (1995) The development of concentration gradients in a suspension of chemotactic bacteria. Bull Math Biol 57(2):299–344

    Article  MATH  Google Scholar 

  • Ito M, Terahara N, Fujinami S, Krulwich TA (2005) Properties of motility in bacillus subtilis powered by the H+-coupled MotAB flagellar stator, Na+-coupled MotPS or hybrid stators MotAS or MotPB. J Mol Biol 352(2):396–408

    Article  Google Scholar 

  • Kato T (1980) Perturbation theory for linear operators. Classics in mathematics, 2nd edn. Springer, New York

    Google Scholar 

  • Kawasaki K, Mochizuki A, Matsushita M, Umeda T, Shigesada N (1997) Modeling spatio-temporal patterns generated by Bacillus subtilis. J Theor Biol 188(2):177–185

    Article  Google Scholar 

  • Kearns DB, Losick R (2003) Swarming motility in undomesticated Bacillus subtilis. Mol Microbiol 49(3):581–590

    Article  Google Scholar 

  • Keller EF, Segel LA (1971a) Model for chemotaxis. J Theor Biol 30(2):225–234

    Article  MATH  Google Scholar 

  • Keller EF, Segel LA (1971b) Traveling bands of chemotactic bacteria: a theoretical analysis. J Theor Biol 30(2):235–248

    Article  MATH  Google Scholar 

  • Lapidus RI, Schiller R (1976) Model for the chemotactic response of a bacterial population. Biophys J 16(7):779–789

    Article  Google Scholar 

  • Larsen EW, Keller JB (1974) Asymptotic solution of neutron transport problems for small mean free paths. J Math Phys 15(1):75–81

    Article  MathSciNet  Google Scholar 

  • Lemou M, Mieussens L (2008) A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit. SIAM J Sci Comput 31(1):334–368

    Article  MathSciNet  MATH  Google Scholar 

  • Leyva JF, Málaga C, Plaza RG (2013) The effects of nutrient chemotaxis on bacterial aggregation patterns with non-linear degenerate cross diffusion. Phys A 392(22):5644–5662

    Article  MathSciNet  MATH  Google Scholar 

  • Lods B (2005) Semigroup generation properties of streaming operators with noncontractive boundary conditions. Math Comput Modell 42(13):1441–1462

    Article  MathSciNet  MATH  Google Scholar 

  • Méndez V, Campos D, Pagonabarraga I, Fedotov S (2012) Density-dependent dispersal and population aggregation patterns. J Theor Biol 309:113–120

    Article  MathSciNet  MATH  Google Scholar 

  • Menolascina F, Rusconi R, Fernandez VI, Smriga S, Aminzare Z, Sontag ED, Stocker R (2017) Logarithmic sensing in Bacillus subtilis aerotaxis. NPJ Syst Biol Appl 3:16036

    Article  Google Scholar 

  • Mesibov R, Ordal GW, Adler J (1973) The range of attractant concentrations for bacterial chemotaxis and the threshold and size of response over this range. J Gen Physiol 62(2):203–223

    Article  Google Scholar 

  • Murray JD (2002) Mathematical biology I. An introduction, interdisciplinary applied mathematics, vol 17, 3rd edn. Springer, New York

    Google Scholar 

  • Myers JH, Krebs CJ (1974) Population cycles in rodents. Sci Am 230:38–46

    Article  Google Scholar 

  • Ohgiwari M, Matsushita M, Matsuyama T (1992) Morphological changes in growth phenomena of bacterial colony patterns. J Phys Soc Jpn 61(3):816–822

    Article  Google Scholar 

  • Othmer HG, Hillen T (2002) The diffusion limit of transport equations. II. Chemotaxis equations. SIAM J Appl Math 62(4):1222–1250

    Article  MathSciNet  MATH  Google Scholar 

  • Othmer HG, Xue C (2013) The mathematical analysis of biological aggregation and dispersal: progress, problems and perspectives. In: Lewis MA, Maini PK, Petrovskii SV (eds) Dispersal, individual movement and spatial ecology, Lecture notes in mathematics, vol 2071. Springer, Heidelberg, pp 79–127

  • Othmer HG, Dunbar SR, Alt W (1988) Models of dispersal in biological systems. J Math Biol 26(3):263–298

    Article  MathSciNet  MATH  Google Scholar 

  • Palczewski A (1992) Velocity averaging for boundary value problems. In: Boffi VC, Bampi F, Toscani G (eds) Nonlinear kinetic theory and mathematical aspects of hyperbolic systems (Rapallo, 1992), series advanced mathematical in applied science, vol 9. World Science Publishing, River Edge, pp 179–186

    Google Scholar 

  • Patlak CS (1953) Random walk with persistence and external bias. Bull Math Biophys 15:311–338

    Article  MathSciNet  MATH  Google Scholar 

  • Rivero MA, Tranquillo RT, Buettner HM, Lauffenburger DA (1989) Transport models for chemotactic cell populations based on individual cell behavior. Chem Eng Sci. 44(12):2881–2897

    Article  Google Scholar 

  • Sánchez-Garduño F, Maini PK, Kappos ME (1996) A review on travelling wave solutions of one-dimensional reaction-diffusion equations with non-linear diffusion term. Forma 11(1):45–59

    MathSciNet  MATH  Google Scholar 

  • Schnitzer MJ (1993) Theory of continuum random walks and application to chemotaxis. Phys Rev E (3) 48(4):2553–2568

    Article  MathSciNet  Google Scholar 

  • Sengers BG, Please CP, Oreffo RO (2007) Experimental characterization and computational modelling of two-dimensional cell spreading for skeletal regeneration. J R Soc Interface 4(17):1107–1117

    Article  Google Scholar 

  • Sherratt JA (2010) On the form of smooth-front travelling waves in a reaction-diffusion equation with degenerate nonlinear diffusion. Math Model Nat Phenom 5(5):64–79

    Article  MathSciNet  MATH  Google Scholar 

  • Shigesada N, Kawasaki K, Teramoto E (1979) Spatial segregation of interacting species. J Theor Biol 79(1):83–99

    Article  MathSciNet  Google Scholar 

  • Stroock DW (1974) Some stochastic processes which arise from a model of the motion of a bacterium. Z Wahrscheinlichkeitstheorie und Verw Gebiete 28:303–315

    Article  MathSciNet  MATH  Google Scholar 

  • Tadmor E, Tao T (2007) Velocity averaging, kinetic formulations, and regularizing effects in quasi-linear PDEs. Commun Pure Appl Math 60(10):1488–1521

    Article  MathSciNet  MATH  Google Scholar 

  • Winkler M (2014) How far can chemotactic cross-diffusion enforce exceeding carrying capacities? J Nonlinear Sci 24(5):809–855

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author warmly thanks Thomas Hillen and Michael Winkler for enlightening conversations. This research was partially supported by DGAPA-UNAM, program PAPIME, Grant PE-104116.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón G. Plaza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plaza, R.G. Derivation of a bacterial nutrient-taxis system with doubly degenerate cross-diffusion as the parabolic limit of a velocity-jump process. J. Math. Biol. 78, 1681–1711 (2019). https://doi.org/10.1007/s00285-018-1323-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-018-1323-x

Keywords

Mathematics Subject Classification

Navigation