Skip to main content

Advertisement

Log in

Finite strain visco-elastic growth driven by nutrient diffusion: theory, FEM implementation and an application to the biofilm growth

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this paper, a thermodynamically consistent visco-elastic growth model driven by nutrient diffusion is presented in the finite deformation framework. Growth phenomena usually occur in biological tissues. Systems involving growth are known to be open systems with a continuous injection of mass into the system which results in volume expansion. Here the growth is driven by the diffusion of a nutrient. It implies that the diffusion equation for the nutrient concentration needs to be solved in conjunction with the conservation equation of mass and momentum. Hence, the problem falls into the multi-physics class. Additionally, a viscous rheological model is introduced to account for stress relaxation. Although the emergence of residual stresses is inherent to the growth process, the viscous behaviour of the material determines to what extend such stresses remain in the body. The numerical implementation is performed using the symbolic tool Ace-Gen while employing a fully implicit and monolithic scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abi-Akl R, Abeyaratne R, Cohen T (2019) Kinetics of surface growth with coupled diffusion and the emergence of a universal growth path. Proc R Soc A 475:20180465

    Article  MathSciNet  MATH  Google Scholar 

  2. Albero BA, Ehret AE, Böl M (2014) A new approach to the simulation of microbial biofilms by a theory of fluid-like pressure-restricted finite growth. Comput Methods Appl Mech Eng 272:271–289

    Article  MathSciNet  MATH  Google Scholar 

  3. Alpkvist E, Klapper I (2007) A multidimensional multispecies continuum model for heterogeneous biofilm development. Bull Math Biol 69:765–789

    Article  MATH  Google Scholar 

  4. Bennett KC, Regueiro RA, Borja RI (2016) Finite strain elastoplasticity considering Eshelby stress for materials undergoing plastic volume change. Int J Plast 77:214–245

    Article  Google Scholar 

  5. Chester SA, Anand L (2010) A coupled theory of fluid permeation and large deformations for elastomeric materials. J Mech Phys Solids 58:1879–1906

    Article  MathSciNet  MATH  Google Scholar 

  6. Coleman BD, Noll W (1963) The thermodynamics of elastic materials with heat conduction and viscosity. Arch Ration Mech Anal 13(1):167–178

    Article  MathSciNet  MATH  Google Scholar 

  7. Cowin SC, Hegedus DH (1976) Bone remodeling: theory of adaptive elasticity. J Elast 6(3):313–326

    Article  MathSciNet  MATH  Google Scholar 

  8. Cyron CJ, Humphrey JD (2017) Growth and remodeling of load-bearing biological soft tissues. Meccanica 52(3):645–664

    Article  MathSciNet  Google Scholar 

  9. Dillon R, Fauci L, Fogelson A, Gaver D (1996) Modeling biofilm processes using the immersed boundary method. J Comput Phys 129(1):57–73

    Article  MATH  Google Scholar 

  10. Dortdivanlioglu B, Linder C (2019) Diffusion-driven swelling-induced instabilities of hydrogels. J Mechan Phys Solids 125:38–52

    Article  MathSciNet  Google Scholar 

  11. Epstein M, Maugin GA (2000) Thermomechanics of volumetric growth in uniform bodies. Int J Plast 16(7):951–978

    Article  MATH  Google Scholar 

  12. Feng D, Neuweiler I, Nackenhorst U (2017) A spatially stabilized TDG based finite element framework for modeling biofilm growth with a multi-dimensional multi-species continuum biofilm model. Comput Mech 59(6):1049–1070

    Article  MathSciNet  Google Scholar 

  13. Gebara F (1999) Activated sludge biofilm wastewater treatment system. Water Res 33(1):230–238

    Article  Google Scholar 

  14. Goriely A (2017) The mathematics and mechanics of biological growth. Springer, New York

    Book  MATH  Google Scholar 

  15. Harrigan TP, Hamilton JJ (1993) Finite element simulation of adaptive bone remodeling: a stability criterion and a time stepping method. Int J Numer Method Eng 36:837–854

    Article  Google Scholar 

  16. Himpel G, Kuhl E, Menzel A, Steinmann P (2005) Computational modeling of isotropic multiplicative growth. Comput Model Eng Sci 4(2):119–134

    MATH  Google Scholar 

  17. Holzapfel GA (1999) On large strain viscoelasticity: continuum formulation and finite element applications to elastomeric structures. Int J Numer Methods Eng 39(22):3903–3926

    Article  MATH  Google Scholar 

  18. Klapper I (2002) Dockery J Finger formation in biofilm layers. SIAM J Appl Math 62(3):853–869

    Article  MathSciNet  MATH  Google Scholar 

  19. Korelc J, Wriggers P (2016) Automation of finite element methods. Springer, Heidelberg

    Book  MATH  Google Scholar 

  20. Kreft JU, Booth G, Wimpenny JWT (1998) BacSim, a simulator for individual-based modeling of bacterial colony growth. Microbiology 144:3275–3287

    Article  Google Scholar 

  21. Kreft JU, Picioreanu C, Wimpenny JWT (2001) Individual-based modeling of biofilms. Microbiology 147:2897–2912

    Article  Google Scholar 

  22. Lardon LA, Merkey BV, Martins S, Dtsch A, Picioreanu C, Kreft JU, Smets BF (2011) iDynoMiCS: next-generation individual-based modeling of biofilms. Environ Microbiol 13(9):2416–2434

    Article  Google Scholar 

  23. Lear G, Lewis GD (2012) Microbial biofilms: current research and applications. Caister Academic Press, Norfolk

    Google Scholar 

  24. Nicolella C, van Loosdrecht MCM, Heijnen JJ (2000) Wastewater treatment with particulate biofilm reactors. J Biotechnol 80(1):1–33

    Article  Google Scholar 

  25. Picioreanu C, van Loosdrecht MCM, Heijnen JJ (1998) A new combined differential-discrete cellular automaton approach for biofilm modeling:application for growth in gel beads. Biotechnol Bioeng 57(6):718–731

    Article  Google Scholar 

  26. Picioreanu C, Loosdrecht MCM, Heijnen JJ (1999) Discrete-differential modeling of biofilm structure. Water Sci Technol 39:115–122

    Article  Google Scholar 

  27. Picioreanu C, Loosdrecht MCM, Heijnen JJ (2000) Effect of diffusive and convective substrate transport on biofilm structure formation: a two-dimensional modeling study. Biotechnol Bioeng 69:504–515

    Article  Google Scholar 

  28. Rath H, Feng D, Neuweiler I, Stumpp NS, Nackenhorst U, Stiesch M (2017) Biofilm formation by the oral pioneer colonizer Streptococcus gordonii: an experimental and numerical study. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fix010

  29. Reese S, Govindjee S (1998) A theory of finite viscoelasticity and numerical aspects. Int J Solids Struct 35(26):3455–3482

    Article  MATH  Google Scholar 

  30. Rittmann BE, McCarty PL (1980) Model of steady-state- kinetics. Biotechnol Bioeng 22:2343–2357

    Article  Google Scholar 

  31. Rodriguez EK, Hoger A, McCulloch AD (1994) Stress-dependent finite growth in soft elastic tissues. J Biomech 27(4):455–467

    Article  Google Scholar 

  32. Sidoroff F (1974) un modle viscolastique non linaire avec configuration intermdiaire. J de Mec 13:679–713

    MathSciNet  Google Scholar 

  33. Simo JC (1987) On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput Methods Appl Mech Eng 60(2):153–173

    Article  MATH  Google Scholar 

  34. Soleimani M, Wriggers P (2016) Numerical simulation and experimental validation of biofilm in a multi-physics framework using an SPH based method. Comput Mech 58(4):619–633

    Article  MathSciNet  Google Scholar 

  35. Taber LA (1998) A model for aortic growth based on fluid shear and fiber stresses. J Biomech Eng 120(3):348–354

    Article  Google Scholar 

  36. Taber LA, Humphrey JD (2001) Stress-modulated growth, residual stress, and vascular heterogeneity. J Biomech Eng 123(6):528–35

    Article  Google Scholar 

  37. Trejo M, Douarche C, Bailleux V, Poulard C, Mariot S, Regeard C, Raspaud E (2013) Elasticity and wrinkled morphology of Bacillus subtilis pellicles. Proc Natl Acad Sci 110:2011–2016

    Article  Google Scholar 

  38. Verner SN, Garikipati K (2018) A computational study of the mechanisms of growth-driven folding patterns on shells, with application to the developing brain. Extreme Mech Lett 18:58–69

    Article  Google Scholar 

  39. Wise SM, Lowengrub JS, Frieboes HB, Cristini V (2008) Three-dimensional multispecies nonlinear tumor growth: model and numerical method. J Theor Biol 253(3):524–543

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meisam Soleimani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soleimani, M. Finite strain visco-elastic growth driven by nutrient diffusion: theory, FEM implementation and an application to the biofilm growth. Comput Mech 64, 1289–1301 (2019). https://doi.org/10.1007/s00466-019-01708-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-019-01708-0

Keywords

Navigation