Skip to main content
Log in

A mathematical formalism for natural selection with arbitrary spatial and genetic structure

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We define a general class of models representing natural selection between two alleles. The population size and spatial structure are arbitrary, but fixed. Genetics can be haploid, diploid, or otherwise; reproduction can be asexual or sexual. Biological events (e.g. births, deaths, mating, dispersal) depend in arbitrary fashion on the current population state. Our formalism is based on the idea of genetic sites. Each genetic site resides at a particular locus and houses a single allele. Each individual contains a number of sites equal to its ploidy (one for haploids, two for diploids, etc.). Selection occurs via replacement events, in which alleles in some sites are replaced by copies of others. Replacement events depend stochastically on the population state, leading to a Markov chain representation of natural selection. Within this formalism, we define reproductive value, fitness, neutral drift, and fixation probability, and prove relationships among them. We identify four criteria for evaluating which allele is selected and show that these become equivalent in the limit of low mutation. We then formalize the method of weak selection. The power of our formalism is illustrated with applications to evolutionary games on graphs and to selection in a haplodiploid population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adlam B, Chatterjee K, Nowak M (2015) Amplifiers of selection. Proc R Soc A Math Phys Eng Sci 471(2181):20150,114

    Article  MathSciNet  MATH  Google Scholar 

  • Akçay E, Van Cleve J (2016) There is no fitness but fitness, and the lineage is its bearer. Philos Trans R Soc B Biol Sci 371(1687):20150,085

    Article  Google Scholar 

  • Allen B, Nowak MA (2014) Games on graphs. EMS Surv Math Sci 1(1):113–151

    Article  MathSciNet  MATH  Google Scholar 

  • Allen B, Tarnita CE (2014) Measures of success in a class of evolutionary models with fixed population size and structure. J Math Biol 68(1–2):109–143

    Article  MathSciNet  MATH  Google Scholar 

  • Allen B, Traulsen A, Tarnita CE, Nowak MA (2012) How mutation affects evolutionary games on graphs. J Theor Biol 299:97–105. https://doi.org/10.1016/j.jtbi.2011.03.034

    Article  MathSciNet  MATH  Google Scholar 

  • Allen B, Nowak MA, Dieckmann U (2013) Adaptive dynamics with interaction structure. Am Nat 181(6):E139–E163

    Article  Google Scholar 

  • Allen B, Sample C, Dementieva Y, Medeiros RC, Paoletti C, Nowak MA (2015) The molecular clock of neutral evolution can be accelerated or slowed by asymmetric spatial structure. PLoS Comput Biol 11(2):e1004,108. https://doi.org/10.1371/journal.pcbi.1004108

    Article  Google Scholar 

  • Allen B, Lippner G, Chen YT, Fotouhi B, Momeni N, Yau ST, Nowak MA (2017) Evolutionary dynamics on any population structure. Nature 544(7649):227–230

    Article  Google Scholar 

  • Antal T, Ohtsuki H, Wakeley J, Taylor PD, Nowak MA (2009a) Evolution of cooperation by phenotypic similarity. Proc Natl Acad Sci 106(21):8597–8600. https://doi.org/10.1073/pnas.0902528106

    Article  MATH  Google Scholar 

  • Antal T, Traulsen A, Ohtsuki H, Tarnita CE, Nowak MA (2009b) Mutation-selection equilibrium in games with multiple strategies. J Theor Biol 258(4):614–622

    Article  MathSciNet  MATH  Google Scholar 

  • Benaïm M, Schreiber SJ (2018) Persistence and extinction for stochastic ecological difference equations with feedbacks. arXiv preprint arXiv:1808.07888

  • Blume LE (1993) The statistical mechanics of strategic interaction. Games Econ Behav 5(3):387–424

    Article  MathSciNet  MATH  Google Scholar 

  • Broom M, Hadjichrysanthou C, Rychtář J (2010) Evolutionary games on graphs and the speed of the evolutionary process. Proc R Soc A Math Phys Eng Sci 466(2117):1327–1346

    Article  MathSciNet  MATH  Google Scholar 

  • Bürger R (2000) The mathematical theory of selection, recombination, and mutation. Wiley, London

    MATH  Google Scholar 

  • Bürger R (2005) A multilocus analysis of intraspecific competition and stabilizing selection on a quantitative trait. J Math Biol 50(4):355–396

    Article  MathSciNet  MATH  Google Scholar 

  • Cattiaux P, Collet P, Lambert A, Martinez S, Méléard S, San Martín J (2009) Quasi-stationary distributions and diffusion models in population dynamics. Ann Probab 37(5):1926–1969

    Article  MathSciNet  MATH  Google Scholar 

  • Cavaliere M, Sedwards S, Tarnita CE, Nowak MA, Csikász-Nagy A (2012) Prosperity is associated with instability in dynamical networks. J Theor Biol 299:126–138

    Article  MathSciNet  MATH  Google Scholar 

  • Champagnat N, Ferrière R, Méléard S (2006) Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models. Theor Popul Biol 69(3):297–321

    Article  MATH  Google Scholar 

  • Chen YT (2013) Sharp benefit-to-cost rules for the evolution of cooperation on regular graphs. Ann Appl Probab 23(2):637–664

    Article  MathSciNet  MATH  Google Scholar 

  • Chen YT (2018) Wright-Fisher diffusions in stochastic spatial evolutionary games with death–birth updating. Ann Appl Probab 28:3418–3490

    Article  MathSciNet  MATH  Google Scholar 

  • Chen YT, McAvoy A, Nowak MA (2016) Fixation probabilities for any configuration of two strategies on regular graphs. Sci Rep 6(39):181

    Google Scholar 

  • Chotibut T, Nelson DR (2017) Population genetics with fluctuating population sizes. J Stat Phys 167(3–4):777–791

    Article  MathSciNet  MATH  Google Scholar 

  • Cohen D (1966) Optimizing reproduction in a randomly varying environment. J Theor Biol 12(1):119–129

    Article  Google Scholar 

  • Constable GW, Rogers T, McKane AJ, Tarnita CE (2016) Demographic noise can reverse the direction of deterministic selection. Proc Natl Acad Sci 113(32):E4745–E4754

    Article  Google Scholar 

  • Cox JT (1989) Coalescing random walks and voter model consensus times on the torus in \({\mathbb{Z}}^d\). Ann Probab 17(4):1333–1366

    Article  MathSciNet  MATH  Google Scholar 

  • Cox JT, Durrett R, Perkins EA (2013) Voter model perturbations and reaction diffusion equations. Asterisque 349

  • Crow JF, Kimura M (1970) An introduction to population genetics theory. Harper and Row, New York

    MATH  Google Scholar 

  • Cvijović I, Good BH, Jerison ER, Desai MM (2015) Fate of a mutation in a fluctuating environment. Proc Natl Acad Sci 112(36):E5021–E5028

    Article  Google Scholar 

  • Débarre F (2017) Fidelity of parent-offspring transmission and the evolution of social behavior in structured populations. J Theor Biol 420:26–35

    Article  MathSciNet  MATH  Google Scholar 

  • Débarre F, Hauert C, Doebeli M (2014) Social evolution in structured populations. Nat Commun 5:4409

    Article  Google Scholar 

  • Dercole F, Rinaldi S (2008) Analysis of evolutionary processes: the adaptive dynamics approach and its applications. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Dieckmann U, Doebeli M (1999) On the origin of species by sympatric speciation. Nature 400(6742):354–357

    Article  Google Scholar 

  • Dieckmann U, Law R (1996) The dynamical theory of coevolution: a derivation from stochastic ecological processes. J Math Biol 34(5):579–612

    Article  MathSciNet  MATH  Google Scholar 

  • Diekmann O, Gyllenberg M, Metz JAJ, Thieme HR (1998) On the formulation and analysis of general deterministic structured population models I. Linear theory. J Math Biol 36:349–388. https://doi.org/10.1007/s002850050104

    Article  MathSciNet  MATH  Google Scholar 

  • Diekmann O, Gyllenberg M, Huang H, Kirkilionis M, Metz JAJ, Thieme HR (2001) On the formulation and analysis of general deterministic structured population models II. Nonlinear theory. J Math Biol 43:157–189. https://doi.org/10.1007/s002850170002

    Article  MathSciNet  MATH  Google Scholar 

  • Diekmann O, Gyllenberg M, Metz J (2007) Physiologically structured population models: towards a general mathematical theory. In: Takeuchi Y, Iwasa Y, Sato K (eds) Mathematics for ecology and environmental sciences, biological and medical physics, biomedical engineering. Springer, Berlin, pp 5–20

    Google Scholar 

  • Doebeli M, Ispolatov Y, Simon B (2017) Towards a mechanistic foundation of evolutionary theory. eLife 6:e23,804

    Article  Google Scholar 

  • Durinx M, Metz JAJ, Meszéna G (2008) Adaptive dynamics for physiologically structured population models. J Math Biol 56(5):673–742

    Article  MathSciNet  MATH  Google Scholar 

  • Durrett R (2014) Spatial evolutionary games with small selection coefficients. Electron J Probab 19(121):1–64. https://doi.org/10.1214/EJP.v19-3621

    Article  MathSciNet  MATH  Google Scholar 

  • Eshel I, Feldman MW, Bergman A (1998) Long-term evolution, short-term evolution, and population genetic theory. J Theor Biol 191(4):391–396

    Article  Google Scholar 

  • Ewens WJ (2004) Mathematical population genetics 1: theoretical introduction, vol 27, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  • Faure M, Schreiber SJ (2014) Quasi-stationary distributions for randomly perturbed dynamical systems. Ann Appl Probab 24(2):553–598. https://doi.org/10.1214/13-aap923

    Article  MathSciNet  MATH  Google Scholar 

  • Fisher R (1930) The genetical theory of natural selection. Clarendon Press, Oxford

    Book  MATH  Google Scholar 

  • Fotouhi B, Momeni N, Allen B, Nowak MA (2018) Conjoining uncooperative societies facilitates evolution of cooperation. Nat Hum Behav 2:492–499

    Article  Google Scholar 

  • Fudenberg D, Imhof LA (2006) Imitation processes with small mutations. J Econ Theory 131(1):251–262. https://doi.org/10.1016/j.jet.2005.04.006

    Article  MathSciNet  MATH  Google Scholar 

  • Geritz SAH, Kisdi E, Meszéna G, Metz JAJ (1997) Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol Ecol 12(1):35–57

    Article  Google Scholar 

  • Gould SJ, Lloyd EA (1999) Individuality and adaptation across levels of selection: How shall we name and generalize the unit of Darwinism? Proc Natl Acad Sci 96(21):11,904–11,909

    Article  Google Scholar 

  • Gyllenberg M, Parvinen K (2001) Necessary and sufficient conditions for evolutionary suicide. Bull Math Biol 63:981–993. https://doi.org/10.1006/bulm.2001.0253

    Article  MATH  Google Scholar 

  • Gyllenberg M, Silvestrov D (2008) Quasi-stationary phenomena in nonlinearly perturbed stochastic systems. Walter de Gruyter, Berlin

    Book  MATH  Google Scholar 

  • Haccou P, Iwasa Y (1996) Establishment probability in fluctuating environments: a branching process model. Theor Popul Biol 50(3):254–280

    Article  MATH  Google Scholar 

  • Haccou P, Jagers P, Vatutin VA (2005) Branching processes: variation, growth, and extinction of populations. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511629136

    Book  MATH  Google Scholar 

  • Haldane J (1924) A mathematical theory of natural and artificial selection. Part I. Trans Camb Philos Soc 23:19–41

    Google Scholar 

  • Hammerstein P (1996) Darwinian adaptation, population genetics and the streetcar theory of evolution. J Math Biol 34(5–6):511–532

    Article  MATH  Google Scholar 

  • Holley RA, Liggett TM (1975) Ergodic theorems for weakly interacting infinite systems and the voter model. Ann Probab 3(4):643–663

    Article  MathSciNet  MATH  Google Scholar 

  • Hull DL (1980) Individuality and selection. Annu Rev Ecol Syst 11(1):311–332

    Article  Google Scholar 

  • Ibsen-Jensen R, Chatterjee K, Nowak MA (2015) Computational complexity of ecological and evolutionary spatial dynamics. Proc Natl Acad Sci 112(51):15,636–15,641

    Google Scholar 

  • Jeong HC, Oh SY, Allen B, Nowak MA (2014) Optional games on cycles and complete graphs. J Theor Biol 356:98–112

    Article  MathSciNet  Google Scholar 

  • Kemeny JG, Snell JL (1960) Finite Markov chains, vol 356. van Nostrand, Princeton

    MATH  Google Scholar 

  • Kimura M (1964) Diffusion models in population genetics. J Appl Probab 1(2):177–232

    Article  MathSciNet  MATH  Google Scholar 

  • Kimura M et al (1968) Evolutionary rate at the molecular level. Nature 217(5129):624–626

    Article  Google Scholar 

  • Kingman JFC (1982) The coalescent. Stoch Processes Appl 13(3):235–248

    Article  MathSciNet  MATH  Google Scholar 

  • Korolev KS (2013) The fate of cooperation during range expansions. PLoS Comput Biol 9(3):e1002,994

    Article  MathSciNet  Google Scholar 

  • Kussell E, Leibler S (2005) Phenotypic diversity, population growth, and information in fluctuating environments. Science 309(5743):2075–2078

    Article  Google Scholar 

  • Lambert A (2006) Probability of fixation under weak selection: a branching process unifying approach. Theor Popul Biol 69(4):419–441

    Article  MATH  Google Scholar 

  • Lehmann L, Rousset F (2009) Perturbation expansions of multilocus fixation probabilities for frequency-dependent selection with applications to the Hill–Robertson effect and to the joint evolution of helping and punishment. Theor Popul Biol 76(1):35–51

    Article  MATH  Google Scholar 

  • Lehmann L, Mullon C, Akcay E, Cleve J (2016) Invasion fitness, inclusive fitness, and reproductive numbers in heterogeneous populations. Evolution 70(8):1689–1702

    Article  Google Scholar 

  • Lessard S, Ladret V (2007) The probability of fixation of a single mutant in an exchangeable selection model. J Math Biol 54(5):721–744

    Article  MathSciNet  MATH  Google Scholar 

  • Lessard S, Soares CD (2018) Frequency-dependent growth in class-structured populations: continuous dynamics in the limit of weak selection. J Math Biol 77(1):229–259. https://doi.org/10.1007/s00285-017-1195-5

    Article  MathSciNet  MATH  Google Scholar 

  • Leturque H, Rousset F (2002) Dispersal, kin competition, and the ideal free distribution in a spatially heterogeneous population. Theor Popul Biol 62(2):169–180

    Article  MATH  Google Scholar 

  • Lewontin RC (1970) The units of selection. Annu Rev Ecol Syst 1(1):1–18

    Article  Google Scholar 

  • Lieberman E, Hauert C, Nowak M (2005) Evolutionary dynamics on graphs. Nature 433(7023):312–316

    Article  Google Scholar 

  • Lindholm AK, Dyer KA, Firman RC, Fishman L, Forstmeier W, Holman L, Johannesson H, Knief U, Kokko H, Larracuente AM et al (2016) The ecology and evolutionary dynamics of meiotic drive. Trends Ecol Evol 31(4):315–326

    Article  Google Scholar 

  • Maciejewski W (2014) Reproductive value in graph-structured populations. J Theor Biol 340:285–293

    Article  MathSciNet  Google Scholar 

  • Malécot G (1948) Les Mathématiques de l’Hérédité. Masson et Cie, Paris

  • McAvoy A, Hauert C (2016) Structure coefficients and strategy selection in multiplayer games. J Math Biol 72(1–2):203–238

    Article  MathSciNet  MATH  Google Scholar 

  • McAvoy A, Adlam B, Allen B, Nowak MA (2018a) Stationary frequencies and mixing times for neutral drift processes with spatial structure. Proc Ro Soc A Math Phys Eng Sci. https://doi.org/10.1098/rspa.2018.0238

  • McAvoy A, Fraiman N, Hauert C, Wakeley J, Nowak MA (2018b) Public goods games in populations with fluctuating size. Theor Popul Biol 121:72–84. https://doi.org/10.1016/j.tpb.2018.01.004

    Article  MATH  Google Scholar 

  • Metz JAJ, de Roos AM (1992) The role of physiologically structured population models within a general individual-based modelling perspective. In: DeAngelis DL, Gross LA, Hallam TG (eds) Individual-based models and approaches in ecology: populations, communities, and ecosystems. Chapman & Hall, London, pp 88–111

    Chapter  Google Scholar 

  • Metz JA, Geritz SA (2016) Frequency dependence 3.0: an attempt at codifying the evolutionary ecology perspective. J Math Biol 72(4):1011–1037

    Article  MathSciNet  MATH  Google Scholar 

  • Metz J, Nisbet R, Geritz S (1992) How should we define ‘fitness’ for general ecological scenarios? Trends Ecol Evol 7(6):198–202. https://doi.org/10.1016/0169-5347(92)90073-K

    Article  Google Scholar 

  • Metz JAJ, Geritz SAH, Meszéna G, Jacobs FA, van Heerwaarden JS (1996) Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction. In: van Strien SJ, Lunel SMV (eds) Stochastic and spatial structures of dynamical systems. KNAW Verhandelingen, Afd., Amsterdam, pp 183–231

    MATH  Google Scholar 

  • Nowak MA, May RM (1992) Evolutionary games and spatial chaos. Nature 359(6398):826–829

    Article  Google Scholar 

  • Nowak MA, Sasaki A, Taylor C, Fudenberg D (2004) Emergence of cooperation and evolutionary stability in finite populations. Nature 428(6983):646–650

    Article  Google Scholar 

  • Nowak MA, Tarnita CE, Antal T (2010a) Evolutionary dynamics in structured populations. Philos Trans R Soc B Biol Sci 365(1537):19

    Article  Google Scholar 

  • Nowak MA, Tarnita CE, Wilson EO (2010b) The evolution of eusociality. Nature 466(7310):1057–1062

    Article  Google Scholar 

  • Ohtsuki H, Hauert C, Lieberman E, Nowak MA (2006) A simple rule for the evolution of cooperation on graphs and social networks. Nature 441:502–505

    Article  Google Scholar 

  • Okasha S (2006) Evolution and the levels of selection. Oxford University Press, Oxford

    Book  Google Scholar 

  • Pacheco JM, Traulsen A, Nowak MA (2006a) Active linking in evolutionary games. J Theor Biol 243(3):437–443. https://doi.org/10.1016/j.jtbi.2006.06.027

    Article  MathSciNet  Google Scholar 

  • Pacheco JM, Traulsen A, Nowak MA (2006b) Coevolution of strategy and structure in complex networks with dynamical linking. Phys Rev Lett 97(25):258,103

    Article  Google Scholar 

  • Parsons TL, Quince C (2007a) Fixation in haploid populations exhibiting density dependence I: the non-neutral case. Theor Popul Biol 72(1):121–135

    Article  MATH  Google Scholar 

  • Parsons TL, Quince C (2007b) Fixation in haploid populations exhibiting density dependence II: the quasi-neutral case. Theor Popul Biol 72(4):468–479

    Article  MATH  Google Scholar 

  • Parsons TL, Quince C, Plotkin JB (2010) Some consequences of demographic stochasticity in population genetics. Genetics 185(4):1345–1354

    Article  Google Scholar 

  • Parvinen K, Seppänen A (2016) On fitness in metapopulations that are both size-and stage-structured. J Math Biol 73(4):903–917

    Article  MathSciNet  MATH  Google Scholar 

  • Pavlogiannis A, Tkadlec J, Chatterjee K, Nowak MA (2018) Construction of arbitrarily strong amplifiers of natural selection using evolutionary graph theory. Commun Biol 1(1):71

    Article  Google Scholar 

  • Pelletier F, Clutton-Brock T, Pemberton J, Tuljapurkar S, Coulson T (2007) The evolutionary demography of ecological change: linking trait variation and population growth. Science 315(5818):1571–1574

    Article  Google Scholar 

  • Peña J, Wu B, Arranz J, Traulsen A (2016) Evolutionary games of multiplayer cooperation on graphs. PLoS Comput Biol 12(8):e1005,059

    Article  Google Scholar 

  • Perc M, Szolnoki A (2010) Coevolutionary games—a mini review. BioSystems 99(2):109–125

    Article  Google Scholar 

  • Philippi T, Seger J (1989) Hedging one’s evolutionary bets, revisited. Trends Ecol Evol 4(2):41–44

    Article  Google Scholar 

  • Price GR (1970) Selection and covariance. Nature 227:520–521

    Article  Google Scholar 

  • Rand DA, Wilson HB, McGlade JM (1994) Dynamics and evolution: evolutionarily stable attractors, invasion exponents and phenotype dynamics. Philos Trans R Soc B Biol Sci 343(1305):261–283. https://doi.org/10.1098/rstb.1994.0025

    Article  Google Scholar 

  • Roth G, Schreiber SJ (2013) Persistence in fluctuating environments for interacting structured populations. J Math Biol 69(5):1267–1317. https://doi.org/10.1007/s00285-013-0739-6

    Article  MathSciNet  MATH  Google Scholar 

  • Roth G, Schreiber SJ (2014) Pushed beyond the brink: Allee effects, environmental stochasticity, and extinction. J Biol Dyn 8(1):187–205. https://doi.org/10.1080/17513758.2014.962631

    Article  MathSciNet  Google Scholar 

  • Rousset F, Billiard S (2000) A theoretical basis for measures of kin selection in subdivided populations: finite populations and localized dispersal. J Evol Biol 13(5):814–825

    Article  Google Scholar 

  • Sample C, Allen B (2017) The limits of weak selection and large population size in evolutionary game theory. J Math Biol 75(5):1285–1317

    Article  MathSciNet  MATH  Google Scholar 

  • Sandler L, Novitski E (1957) Meiotic drive as an evolutionary force. Am Nat 91(857):105–110

    Article  Google Scholar 

  • Santos FC, Pacheco JM (2005) Scale-free networks provide a unifying framework for the emergence of cooperation. Phys Rev Lett 95(9):98,104

    Article  Google Scholar 

  • Schoener TW (2011) The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science 331(6016):426–429

    Article  Google Scholar 

  • Schreiber SJ, Benaïm M, Atchadé KAS (2010) Persistence in fluctuating environments. J Math Biol 62(5):655–683. https://doi.org/10.1007/s00285-010-0349-5

    Article  MathSciNet  MATH  Google Scholar 

  • Silvestrov D, Silvestrov S (2017) Nonlinearly perturbed semi-Markov processes. Springer, Cham

    Book  MATH  Google Scholar 

  • Simon B, Fletcher JA, Doebeli M (2013) Towards a general theory of group selection. Evolution 67(6):1561–1572

    Article  Google Scholar 

  • Starrfelt J, Kokko H (2012) Bet-hedging—a triple trade-off between means, variances and correlations. Biol Rev 87(3):742–755

    Article  Google Scholar 

  • Szabó G, Fáth G (2007) Evolutionary games on graphs. Phys Rep 446(4–6):97–216

    Article  MathSciNet  Google Scholar 

  • Tarnita CE, Taylor PD (2014) Measures of relative fitness of social behaviors in finite structured population models. Am Nat 184(4):477–488

    Article  Google Scholar 

  • Tarnita CE, Antal T, Ohtsuki H, Nowak MA (2009a) Evolutionary dynamics in set structured populations. Proc Natl Acad Sci 106(21):8601–8604

    Article  Google Scholar 

  • Tarnita CE, Ohtsuki H, Antal T, Fu F, Nowak MA (2009b) Strategy selection in structured populations. J Theor Biol 259(3):570–581. https://doi.org/10.1016/j.jtbi.2009.03.035

    Article  MathSciNet  MATH  Google Scholar 

  • Tarnita CE, Wage N, Nowak MA (2011) Multiple strategies in structured populations. Proc Natl Acad Sci 108(6):2334–2337. https://doi.org/10.1073/pnas.1016008108

    Article  Google Scholar 

  • Tavaré S (1984) Line-of-descent and genealogical processes, and their applications in population genetics models. Theor Popul Biol 26(2):119–164

    Article  MathSciNet  MATH  Google Scholar 

  • Taylor PD (1990) Allele-frequency change in a class-structured population. Am Nat 135(1):95–106

    Article  MathSciNet  Google Scholar 

  • Taylor PD, Frank SA (1996) How to make a kin selection model. J Theor Biol 180(1):27–37

    Article  Google Scholar 

  • Taylor P, Day T, Wild G (2007a) From inclusive fitness to fixation probability in homogeneous structured populations. J Theor Biol 249(1):101–110

    Article  MathSciNet  Google Scholar 

  • Taylor PD, Day T, Wild G (2007b) Evolution of cooperation in a finite homogeneous graph. Nature 447(7143):469–472

    Article  Google Scholar 

  • Traulsen A, Hauert C, De Silva H, Nowak MA, Sigmund K (2009) Exploration dynamics in evolutionary games. Proc Natl Acad Sci 106(3):709–712

    Article  MATH  Google Scholar 

  • Uecker H, Hermisson J (2011) On the fixation process of a beneficial mutation in a variable environment. Genetics 188(4):915–930

    Article  Google Scholar 

  • Van Cleve J (2015) Social evolution and genetic interactions in the short and long term. Theor Popul Biol 103:2–26

    Article  MATH  Google Scholar 

  • van Veelen M (2005) On the use of the price equation. J Theor Biol 237(4):412–426

    Article  MathSciNet  Google Scholar 

  • Wakano JY, Nowak MA, Hauert C (2009) Spatial dynamics of ecological public goods. Proc Natl Acad Sci 106(19):7910–7914

    Article  Google Scholar 

  • Wakano JY, Ohtsuki H, Kobayashi Y (2013) A mathematical description of the inclusive fitness theory. Theor Popul Biol 84:46–55

    Article  MATH  Google Scholar 

  • Wakeley J (2009) Coalescent theory: an introduction. Roberts & Company Publishers, Greenwood Village

    MATH  Google Scholar 

  • Wardil L, Hauert C (2014) Origin and structure of dynamic cooperative networks. Sci Rep 4:5725

    Article  Google Scholar 

  • Waxman D (2011) A unified treatment of the probability of fixation when population size and the strength of selection change over time. Genetics 188(4):907–913

    Article  Google Scholar 

  • Williams GC (1966) Adaptation and natural selection: a critique of some current evolutionary thought. Princeton University Press, Princeton

    Google Scholar 

  • Wu B, Zhou D, Fu F, Luo Q, Wang L, Traulsen A (2010) Evolution of cooperation on stochastic dynamical networks. PLoS ONE 5(6):e11,187. https://doi.org/10.1371/journal.pone.0011187

    Article  Google Scholar 

  • Wu B, Gokhale CS, Wang L, Traulsen A (2012) How small are small mutation rates? J Math Biol 64(5):803–827

    Article  MathSciNet  MATH  Google Scholar 

  • Wu B, Traulsen A, Gokhale CS (2013) Dynamic properties of evolutionary multi-player games in finite populations. Games 4(2):182–199

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

BA is supported by National Science Foundation Award #DMS-1715315. AM is supported by the Office of Naval Research, Grant N00014-16-1-2914. We thank Martin A. Nowak for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Allen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allen, B., McAvoy, A. A mathematical formalism for natural selection with arbitrary spatial and genetic structure. J. Math. Biol. 78, 1147–1210 (2019). https://doi.org/10.1007/s00285-018-1305-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-018-1305-z

Keywords

Mathematics Subject Classification

Navigation