Skip to main content
Log in

Effects of stochastic perturbation on the SIS epidemic system

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper we extend the classical SIS epidemic model from a deterministic framework to a stochastic one. We also study the long time behavior of the stochastic system. We mainly establish conditions for the extinction of disease from the population as well as the persistence of disease under different conditions. In the case of persistence, we show the existence of a stationary distribution. we found that the introduction of stochastic noise changes the basic reproduction number. The presented results are demonstrated by numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen LJ (2010) An introduction to stochastic processes with applications to biology. CRC Press, Boca Raton

    Google Scholar 

  • Andersson H, Britton T (2012) Stochastic epidemic models and their statistical analysis, vol 151. Springer, Berlin

    MATH  Google Scholar 

  • Beretta E, Kolmanovskii V, Shaikhet L (1998) Stability of epidemic model with time delays influenced by stochastic perturbations. Math Comput Simul 45(3):269–277

    Article  MathSciNet  MATH  Google Scholar 

  • Casagrandi R, Bolzoni L, Levin S, Andreasen V (2006) The sirc model and influenza a. Math Biosci 200:152–169

    Article  MathSciNet  MATH  Google Scholar 

  • Da Prato G, Zabczyk J (1996) Ergodicity for infinite dimensional systems, vol 229. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Dalal N, Greenhalgh D, Mao X (2007) A stochastic model of aids and condom use. J Math Anal Appl 325:36–53

    Article  MathSciNet  MATH  Google Scholar 

  • Dang NH, Du NH, Ton TV (2011) Asymptotic behavior of predator-prey systems perturbed by white noise. Acta Appl Math 115(3):351–370

    Article  MathSciNet  MATH  Google Scholar 

  • Durrett R (1996) Stochastic calculus: a practical introduction, vol 6. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Gray A, Greenhalgh D, Hu L, Mao X, Pan J (2011) A stochastic differential equation sis epidemic model. SIAM J Appl Math 71(3):876–902

    Article  MathSciNet  MATH  Google Scholar 

  • Gray A, Greenhalgh D, Mao X, Pan J (2012) The sis epidemic model with markovian switching. J Math Anal Appl 394(2):496–516

    Article  MathSciNet  MATH  Google Scholar 

  • Greenhalgh D, Liang Y, Mao X (2015) Demographic stochastic in the sde sis epidemic model. Discret Cont Dyn-B 20:2859–2884

    Article  MathSciNet  MATH  Google Scholar 

  • Herbert H, Yorke J (1984) Gonorrhea transmission dynamics and control, vol 56. Lecture Notes in Biomathematics. springer-verlag edn, Berlin

  • Hethcote H (2000) The mathematics of infectious diseases. SIAM Rev 42:599–653

    Article  MathSciNet  MATH  Google Scholar 

  • Imhof L, Walcher S (2005) Exclusion and persistence in deterministic and stochastic chemostat models. J Differ Equ 217(1):26–53

    Article  MathSciNet  MATH  Google Scholar 

  • Kloeden PE, Platen E (1992) Higher-order implicit strong numerical schemes for stochastic differential equations. J Stat Phys 66(1–2):283–314

    Article  MathSciNet  MATH  Google Scholar 

  • Korobeinikov A, Wake G (2002) Lyapunov functions and global stability for sir, sirs, and sis epidemiological models. Appl Math Lett 15:955–960

    Article  MathSciNet  MATH  Google Scholar 

  • Lahrouz A, Omari L (2013) Extinction and stationary distribution of a stochastic sirs epidemic model with non-linear incidence. Stat Probab Lett 83(4):960–968

    Article  MathSciNet  MATH  Google Scholar 

  • Lahrouz A, Settati A (2013) Asymptotic properties of switching diffusion epidemic model with varying population size. Appl Math Comput 219(24):11134–11148

    MathSciNet  MATH  Google Scholar 

  • Lahrouz A, Settati A (2014a) Necessary and sufficient condition for extinction and persistence of sirs system with random perturbation. Appl Math Comput 233:10–19

    MathSciNet  MATH  Google Scholar 

  • Lahrouz A, Settati A (2014b) Qualitative study of a nonlinear stochastic sirs epidemic system. Stoch Anal Appl 32(6):992–1008

    Article  MathSciNet  MATH  Google Scholar 

  • Lahrouz A, Omari L, Kiouach D, Belmaati A (2012) Complete global stability for an sirs epidemic model with generalized non-linear incidence and vaccination. Appl Math Comput 218:6519–6525

    MathSciNet  MATH  Google Scholar 

  • Lin Y, Jiang D, Wang S (2014a) Stationary distribution of a stochastic sis epidemic model with vaccination. Phys A Stat Mech Appl 394:187–197

    Article  MathSciNet  Google Scholar 

  • Lin Y, Jiang D, Xia P (2014b) Long-time behavior of a stochastic sir model. Appl Math Comput 236:1–9

    MathSciNet  MATH  Google Scholar 

  • Liu M, Wang K, Wu Q (2011) Survival analysis of stochastic competitive models in a polluted environment and stochastic competitive exclusion principle. Bull Math Biol 73(9):1969–2012

    Article  MathSciNet  MATH  Google Scholar 

  • Mandal PS, Banerjee M (2012) Stochastic persistence and stationary distribution in a holling-tanner type prey-predator model. Phys A Stat Mech Appl 391(4):1216–1233

    Article  Google Scholar 

  • McCluskey A, van den Driessche E (2004) Global analysis of two tuberculosis models. J Dyn Differ Equ 16(2):139–166

    Article  MathSciNet  MATH  Google Scholar 

  • Nåsell I (1996) The quasi-stationary distribution of the closed endemic sis model. Adv Appl Probab 28:895–932

    Article  MathSciNet  MATH  Google Scholar 

  • Nåsell I (2011) Extinction and quasi-stationarity in the stochastic logistic SIS model, vol 2022. Springer, Berlin

    Google Scholar 

  • Norris J (1986) Simplified malliavin calculus. Séminaire de Probabilités XX 1984/85. Springer, Berlin, pp 101–130

    Book  Google Scholar 

  • Rudnicki R (2003) Long-time behaviour of a stochastic prey-predator model. Stoch Processes Appl 108(1):93–107

    Article  MathSciNet  MATH  Google Scholar 

  • Rudnicki R, Pichór K (2007) Influence of stochastic perturbation on prey-predator systems. Math Biosci 206(1):108–119

    Article  MathSciNet  MATH  Google Scholar 

  • WHO (2004) The global burden of disease: 2004 update. www.who.int/healthinfo/global_burden_disease/GBD_report_2004update_full.pdf

  • Xia P, Zheng X, Jiang D (2013) Persistence and nonpersistence of a nonautonomous stochastic mutualism system. Abstr Appl Anal 2013:13

    MathSciNet  MATH  Google Scholar 

  • Yang Q, Jiang D, Shi N, Ji C (2012) The ergodicity and extinction of stochastically perturbed sir and seir epidemic models with saturated incidence. J Math Anal Appl 388(1):248–271

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou J, Hethcote H (1994) Population size dependent incidence in models for diseases without immunity. J Math Biol 32:809–834

    Article  MATH  Google Scholar 

  • Zhu C, Yin G (2007) Asymptotic properties of hybrid diffusion systems. SIAM J Control Optim 46(4):1155–1179

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the editor and the anonymous reviewers for their careful reading and valuable suggestions which improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aadil Lahrouz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahrouz, A., Settati, A. & Akharif, A. Effects of stochastic perturbation on the SIS epidemic system. J. Math. Biol. 74, 469–498 (2017). https://doi.org/10.1007/s00285-016-1033-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-016-1033-1

Keywords

Mathematics Subject Classification

Navigation