Skip to main content
Log in

Is a nonlocal diffusion strategy convenient for biological populations in competition?

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

“When the sun comes up, you better be running.”

The Fable of the Lion and the Gazelle,

popular quotation by Undetermined Author,

http://quoteinvestigator.com/2011/08/05/lion-gazelle/

Abstract

We study the viability of a nonlocal dispersal strategy in a reaction-diffusion system with a fractional Laplacian operator. We show that there are circumstances—namely, a precise condition on the distribution of the resource—under which the introduction of a new nonlocal dispersal behavior is favored with respect to the local dispersal behavior of the resident population. In particular, we consider the linearization of a biological system that models the interaction of two biological species, one with local and one with nonlocal dispersal, that are competing for the same resource. We give a simple, concrete example of resources for which the equilibrium with only the local population becomes linearly unstable. In a sense, this example shows that nonlocal strategies can invade an environment in which purely local strategies are dominant at the beginning, provided that the resource is sufficiently sparse. Indeed, the example considered presents a high variance of the distribution of the dispersal, thus suggesting that the shortage of resources and their unbalanced supply may be some of the basic environmental factors that favor nonlocal strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. By “overall principles” we mean the availability of a general method, depending on the measurement of some parameters in the environment, which allows a population to choose an optimal strategy. We are referring to the impossibility of having a satisfactory and complete model for population dynamics, due to the complexity of the biological world.

  2. Up to Sect. 2.3 we investigate the opposite situation, too, that is, when the resident population has a nonlocal dispersal strategy and the mutant population has a local one.

  3. In our model, we do not even take into account different dispersal rates \(\mu \) and \(\nu \).

  4. The fact that the Dirichlet boundary condition is not homogeneous reflects mathematically the practical condition of performing an effective distribution plan for the population outside the strategic region.

  5. For the sake of simplicity, we omit the multiplicative normalization constants.

  6. The case \(n\geqslant 3\) is simpler because the Sobolev conjugated exponent \(2^*=2n/(n-2)\) is not critical. Indeed, in this case the parameter \(s'\) does not play much role.

References

  • Aluffi G (2014) Per andare a caccia la medusa si muove come un computer. Il Venerdì di Repubblica

  • Ambrosetti A, Prodi G (1972) On the inversion of some differentiable mappings with singularities between Banach spaces. Ann Mat Pura Appl 4(93):231–246

    Article  MathSciNet  MATH  Google Scholar 

  • Berestycki H, Lions P-L, Peletier LA (1981) An ODE approach to the existence of positive solutions for semilinear problems in \({ R}^{N}\). Indiana Univ Math J 30(1):141–157

    Article  MathSciNet  MATH  Google Scholar 

  • Berestycki H, Roquejoffre J-M, Rossi L (2011) The periodic patch model for population dynamics with fractional diffusion. Discrete Contin Dyn Syst Ser S 4(1):1–13

    Article  MathSciNet  MATH  Google Scholar 

  • Boyadjiev G, Kutev N (2002) Comparison principle for quasilinear elliptic and parabolic systems. C R Acad Bulgare Sci 55(1):9–12

    MathSciNet  MATH  Google Scholar 

  • Cabré X, Roquejoffre J-M (2009) Propagation de fronts dans les équations de Fisher-KPP avec diffusion fractionnaire. C R Math Acad Sci Paris 347(23–24):1361–1366

    Article  MathSciNet  MATH  Google Scholar 

  • Caffarelli L, Dipierro S, Valdinoci E (2016) A logistic equation with nonlocal interactions (in press)

  • Cantrell RS, Cosner C (2003) Spatial ecology via reaction-diffusion equations. Wiley Series in Mathematical and Computational Biology. Wiley, Chichester

  • Cantrell RS, Cosner C, Lou Y, Ryan D (2012) Evolutionary stability of ideal free dispersal strategies: a nonlocal dispersal model. Can Appl Math Q 20(1):15–38

    MathSciNet  MATH  Google Scholar 

  • Chen X, Hambrock R, Lou Y (2008) Evolution of conditional dispersal: a reaction-diffusion-advection model. J Math Biol 57(3):361–386

    Article  MathSciNet  MATH  Google Scholar 

  • Cosner C, Dávila J, Martínez S (2012) Evolutionary stability of ideal free nonlocal dispersal. J Biol Dyn 6(2):395–405

    Article  MathSciNet  Google Scholar 

  • Cosner C, Hutson V (1993) Permanence in ecological systems with spatial heterogeneity. Proc R Soc Edinb Sect A 123(3):533–559

    Article  MathSciNet  MATH  Google Scholar 

  • Cosner C, Hutson V (1996) Ecological models, permanence and spatial heterogeneity. Rocky Mt J Math 26(1):1–35

    Article  MathSciNet  MATH  Google Scholar 

  • Cosner C, Lou Y (2007) Advection-mediated coexistence of competing species. Proc R Soc Edinb Sect A 137(3):497–518

    Article  MathSciNet  MATH  Google Scholar 

  • Cosner C, Lou Y (2010) Evolution of dispersal and the ideal free distribution. Math Biosci Eng 7(1):17–36

    Article  MathSciNet  MATH  Google Scholar 

  • Cotsiolis A, Tavoularis NK (2004) Best constants for Sobolev inequalities for higher order fractional derivatives. J Math Anal Appl 295(1):225–236

    Article  MathSciNet  MATH  Google Scholar 

  • de la Llave R, Valdinoci E (2007) Multiplicity results for interfaces of Ginzburg–Landau–Allen–Cahn equations in periodic media. Adv Math 215(1):379–426

    Article  MathSciNet  MATH  Google Scholar 

  • Di Nezza E, Palatucci G, Valdinoci E (2012) Hitchhiker’s guide to the fractional Sobolev spaces. Bull Sci Math 136(5):521–573

    Article  MathSciNet  MATH  Google Scholar 

  • Diekmann O (2004) A beginner’s guide to adaptive dynamics. In Mathematical modelling of population dynamics, vol 63. Banach Center Publishing, pp 47–86. Polish Academy of Sciences, Warsaw

  • Dipierro S, Savin O, Valdinoci E (2016) All functions are locally \(s\)-harmonic up to a small error. J Eur Math Soc (JEMS) (in press)

  • Dockery J, Hutson V, Mischaikow K, Pernarowski M (1998) The evolution of slow dispersal rates: a reaction diffusion model. J Math Biol 37(1):61–83

    Article  MathSciNet  MATH  Google Scholar 

  • Friedman A (2012) PDE problems arising in mathematical biology. Netw Heterog Media 7(4):691–703

    Article  MathSciNet  MATH  Google Scholar 

  • Gilbarg D, Trudinger NS (2001) Elliptic partial differential equations of second order. Classics in Mathematics. Springer, Berlin (reprint 1998 edn)

  • Hastings A (1983) Can spatial variation alone lead to selection for dispersal? Theor Popul Biol 24(3):244–251

    Article  MathSciNet  MATH  Google Scholar 

  • Hirsch MW, Smith HL (2003) Competitive and cooperative systems: mini-review. In Positive systems (Rome, 2003). Lecture notes in control and informatics and sciences, vol 294, pp 183–190. Springer, Berlin

  • Hirsch MW (1988a) Stability and convergence in strongly monotone dynamical systems. J Reine Angew Math 383:1–53

  • Hirsch MW (1988b) Systems of differential equations which are competitive or cooperative. III. Competing species. Nonlinearity 1(1):51–71

  • Hirsch MW (1982) Systems of differential equations which are competitive or cooperative. I. Limit sets. SIAM J Math Anal 13(2):167–179

    Article  MathSciNet  MATH  Google Scholar 

  • Humphries NE, Queiroz N, Dyer JRM, Pade NG, Musyl MK, Schaefer KM, Fuller DW, Brunnschweiler JM, Doyle TK, Houghton JDR, Hays GC, Jones CS, Noble LR, Wearmouth VJ, Southall EJ, Sims DW (2010) Environmental context explains Lévy and Brownian movement patterns of marine predators. Nature 465:1066–1069

    Article  Google Scholar 

  • Hutson V, Mischaikow K, Poláčik P (2001) The evolution of dispersal rates in a heterogeneous time-periodic environment. J Math Biol 43(6):501–533

    Article  MathSciNet  MATH  Google Scholar 

  • Hutson V, Martinez S, Mischaikow K, Vickers GT (2003) The evolution of dispersal. J Math Biol 47(6):483–517

    Article  MathSciNet  MATH  Google Scholar 

  • Kao C-Y, Lou Y, Shen W (2010) Random dispersal vs. non-local dispersal. Discrete Contin Dyn Syst 26(2):551–596

    MathSciNet  MATH  Google Scholar 

  • Kao C-Y, Lou Y, Shen W (2012) Evolution of mixed dispersal in periodic environments. Discrete Contin Dyn Syst Ser B 17(6):2047–2072

    Article  MathSciNet  MATH  Google Scholar 

  • Montefusco E, Pellacci B, Verzini G (2012) Fractional diffusion with Neumann boundary conditions: the logistic equations (in press)

  • Mora X (1983) Semilinear parabolic problems define semiflows on \(C^{k}\) spaces. Trans Am Math Soc 278(1):21–55

    MathSciNet  MATH  Google Scholar 

  • Smith HL (1995) Monotone dynamical systems. Mathematical surveys and monographs, vol 41. An introduction to the theory of competitive and cooperative systems. American Mathematical Society, Providence

  • Stan D, Vázquez JL (2014) The Fisher-KPP equation with nonlinear fractional diffusion. SIAM J Math Anal 46(5):3241–3276

    Article  MathSciNet  MATH  Google Scholar 

  • Valdinoci Enrico (2009) From the long jump random walk to the fractional Laplacian. Bol. Soc. Esp. Mat. Apl. S\(\vec{\rm e}\)MA, (49):33–44

  • Viswanathan GM, Afanasyev V, Buldyrev SV, Murphy EJ, Prince PA, Stanley HE Lévy flight search patterns of wandering albatrosses. Nature 381(1):413–415

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annalisa Massaccesi.

Additional information

This work has been supported by ERC Grant 277749 “EPSILON Elliptic Pde’s and Symmetry of Interfaces and Layers for Odd Nonlinearities”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Massaccesi, A., Valdinoci, E. Is a nonlocal diffusion strategy convenient for biological populations in competition?. J. Math. Biol. 74, 113–147 (2017). https://doi.org/10.1007/s00285-016-1019-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-016-1019-z

Keywords

Mathematics Subject Classification

Navigation