Skip to main content
Log in

Persistence versus extinction for a class of discrete-time structured population models

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We provide sharp conditions distinguishing persistence and extinction for a class of discrete-time dynamical systems on the positive cone of an ordered Banach space generated by a map which is the sum of a positive linear contraction A and a nonlinear perturbation G that is compact and differentiable at zero in the direction of the cone. Such maps arise as year-to-year projections of population age, stage, or size-structure distributions in population biology where typically A has to do with survival and individual development and G captures the effects of reproduction. The threshold distinguishing persistence and extinction is the principal eigenvalue of \(({\mathbb {I}}-A)^{-1}G'(0)\) provided by the Krein-Rutman Theorem, and persistence is described in terms of associated eigenfunctionals. Our results significantly extend earlier persistence results of the last two authors which required more restrictive conditions on G. They are illustrated by application of the results to a plant model with a seed bank.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bacaër N (2009) Periodic matrix population models: growth rate, basic reproduction number, and entropy. Bull Math Biol 71:1781–1792

    Article  MathSciNet  MATH  Google Scholar 

  • Bacaër N, Ait EH (2012) Dads, On the biological interpretation of a definition for the parameter R0 in periodic population models. J Math Biol 65:601–621

    Article  MathSciNet  MATH  Google Scholar 

  • Bonsall FF (1958) Linear operators in complete positive cones. Proc Lond Math Soc 8:53–75

    Article  MathSciNet  Google Scholar 

  • Cushing JM (2011) On the relationship between \(r\) and \(R_0\) and its role in the bifurcation of stable equilibria of Darwinian matrix models. J Biol Dyn 5:277–297

    Article  MathSciNet  Google Scholar 

  • Cushing JM, Ackleh AS (2012) A net reproductive number for periodic matrix models. J Biol Dyn 6:166–188

    Article  MathSciNet  Google Scholar 

  • Cushing JM, Zhou Y (1994) The net reproductive value and stability in matrix population models. Nat Res Mod 8:297–333

    Google Scholar 

  • Deimling KD (1985) Nonlinear functional analysis. Springer, Berlin Heidelberg

    Book  MATH  Google Scholar 

  • Diekmann O, Getto P, Gyllenberg M (2007) Stability and bifurcation analysis of Volterra functional equations in the light of suns and stars. SIAM J Math Anal 39:1023–1069

    Article  MathSciNet  MATH  Google Scholar 

  • Diekmann O, Gyllenberg M, Huang H, Kirkilionis M, Metz JAJ, Thieme HR (2001) On the formulation and analysis of general deterministic structured population models. II. Nonlinear theory. J Math Biol 43:157–189

    Article  MathSciNet  MATH  Google Scholar 

  • Diekmann O, Gyllenberg M, Metz JAJ (2003) Steady-state analysis of structured population models. Theor Pop Biol 63:309–338

    Article  MATH  Google Scholar 

  • Diekmann O, Gyllenberg M, Metz JAJ, Thieme HR (1998) On the formulation and analysis of general deterministic structured population models. I. Linear theory. J Math Biol 36:349–388

    Article  MathSciNet  MATH  Google Scholar 

  • Diekmann O, Gyllenberg M, Metz JAJ, Nakaoka S, de Roos AM (2010) Daphnia revisited: local stability and bifurcation theory for physiologically structured population models explained by way of an example. J Math Biol 61:277–318

    Article  MathSciNet  MATH  Google Scholar 

  • Eager EA, Rebarber R, Tenhumberg B (2014) Global asymptotical stability of plant-seed bank models. J Math Biol 69:1–13

    Article  MathSciNet  MATH  Google Scholar 

  • Gyllenberg M, Lant T, Thieme HR (2006) Perturbing evolutionary systems on dual spaces by cumulative outputs. Diff Integr Eqn 19:401–436

    MathSciNet  MATH  Google Scholar 

  • Gyllenberg M, Metz JAJ (2001) On fitness in structured metapopulations. J Math Biol 43:545–560

    Article  MathSciNet  MATH  Google Scholar 

  • Jin W (2014) Persistence of discrete dynamical systems in infinite dimensional state spaces. Dissertation, Arizona State University

  • Jin W, Thieme HR (2015) An extinction/persistence threshold for sexually reproducing populations: the cone spectral radius (under review)

  • Kato T (1976) Perturbation theory for linear operators. Springer, Berlin Heidelberg

    Book  MATH  Google Scholar 

  • Krasnosel’skij MA, Lifshits JA, Sobolev AV (1989) Positive linear systems: the method of positive operators. Heldermann Verlag, Berlin

    MATH  Google Scholar 

  • Krause U (2015) Positive dynamical systems in discrete time. Theory, models and applications. De Gruyter, Berlin

    Book  MATH  Google Scholar 

  • Krein MG (1939) Sur les opérations linéaires transformant un certain ensemble conique en lui-même. CR (Doklady) Acad Sci URSS (NS) 23:749–752

    MathSciNet  Google Scholar 

  • Krein MG, Rutman MA (1948) Linear operators leaving invariant a cone in a Banach space (Russian). Uspehi Mat Nauk (NS) 3:3–95, Am Math Soc Transl (1950)

  • Lemmens B, Nussbaum RD (2012) Nonlinear Perron-Frobenius theory. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Lemmens B, Nussbaum RD (2013) Continuity of the cone spectral radius. Proc Am Math Soc 141:2741–2754

    Article  MathSciNet  MATH  Google Scholar 

  • Mallet-Paret J, Nussbaum RD (2010) Generalizing the Krein-Rutman theorem, measures of noncompactness and the fixed point index. J Fixed Point Theory Appl 7:103–143

    Article  MathSciNet  MATH  Google Scholar 

  • Nussbaum RD (1981) Eigenvectors of nonlinear positive operators and the linear Krein-Rutman theorem. In: Fadell E, Fournier G (eds) Fixed Point Theory. Springer, New York, pp 309–331

    Chapter  Google Scholar 

  • Nussbaum RD (1998) Eigenvectors of order-preserving linear operators. J Lond Math Soc 2:480–496

    Article  MathSciNet  Google Scholar 

  • Rebarber R, Tenhumberg B, Townley B (2012) Global asymptotic stability of density dependent integral population projection models. Theor Popul Biol 81:81–87

    Article  MATH  Google Scholar 

  • Schaefer HH (1966) Topological vector spaces. Macmillan, New York

    MATH  Google Scholar 

  • Smith HL, Thieme HR (2011) Dynamical systems and population persistence. AMS, Providence

    MATH  Google Scholar 

  • Smith HL, Thieme HR (2013) Persistence and global stability for a class of discrete time structured population models. Disc Cont Dyn Syst 33:4627–4646

    Article  MathSciNet  MATH  Google Scholar 

  • Smoller J (1983) Shock waves and reaction-diffusion equations. Springer, New York

    Book  MATH  Google Scholar 

  • Thieme HR (2009) Spectral bound and reproduction number for infinite dimensional population structure and time-heterogeneity. SIAM J Appl Math 70:188–211

    Article  MathSciNet  MATH  Google Scholar 

  • Thieme HR (2013) Eigenvectors and eigenfunctionals of homogeneous order-preserving maps. arXiv:1302.3905v1 [math.FA]

  • Thieme HR (2014) Eigenfunctionals of homogeneous order-preserving maps with applications to sexually reproducing populations (under review)

Download references

Acknowledgments

The authors thank two anonymous referees and the handling editor Odo Diekmann for their very helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst R. Thieme.

Additional information

W. Jin partially supported by NSF Grant DMS-0715451; H. L. Smith partially supported by NSF Grant DMS-0918440.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, W., Smith, H.L. & Thieme, H.R. Persistence versus extinction for a class of discrete-time structured population models. J. Math. Biol. 72, 821–850 (2016). https://doi.org/10.1007/s00285-015-0898-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-015-0898-8

Keywords

Mathematics Subject Classification

Navigation