Skip to main content
Log in

Ultrasensitivity in independent multisite systems

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Multisite modifications are widely recognized as an essential feature of many switch-like responses in signal transduction. It is usually assumed that the modification of one site directly or indirectly increases the rate of modification of neighboring sites. In this paper we provide a new set of assumptions for a multisite system to become highly ultrasensitive even in the absence of cooperativity or allostery. We assume that the individual sites are modified independently of each other, and that protein activity is an ultrasensitive function of the fraction of modified sites. These assumptions are particularly useful in the context of multisite systems with a large (8+) number of sites. We estimate the apparent Hill coefficient of the dose responses in the sequential and nonsequential cases, highlight their different qualitative properties, and discuss a formula to approximate dose responses in the nonsequential case. As an example we describe a model of bacterial chemotaxis that features robust ultrasensitivity and perfect adaptation over a wide range of ligand concentrations, based on non-allosteric multisite behavior at the level of receptors and flagella. We also include a model of the inactivation of the yeast pheromone protein Ste5 by cell cycle proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baker M, Wolanin P, Stock J (2006) Signal transduction in bacterial chemotaxis. Bioessays 28:9–22

    Article  Google Scholar 

  • Bardwell L (2004) A walk-through of the yeast mating pheromone response pathway. Peptides 25(9):1465–1476

    Article  Google Scholar 

  • Beard D, Qian H (2008) Chemical biophysics: quantitative analysis of cellular systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bernstein S (1912–1913) Demonstration du théorème de Weierstrass, fondée sur le calcul des probabilités. Comm Kharkov Math Soc 13:1–2

    Google Scholar 

  • Chan C, Liu X, Wang L, Bardwell L, Nie Q, Enciso G (2012) Protein scaffolds can enhance the bistability of multisite phosphorylation. PLoS Comp Biol 8:1–9

    Article  Google Scholar 

  • Cornish-Bowden A (1979) Fundamentals of enzyme kinetics, chapter 8. Butterworth & Co. Ltd., London

    Google Scholar 

  • Danos V, Feret J, Fontana W, Harmer R, Krivine J (2010) Abstracting the differential semantics of rule-based models: exact and automated model reduction. Annual IEEE Symp Logic Comp Sci

  • Dohlman H (2002) G proteins and pheromone signaling. Annu Rev Physiol 64:129–152

    Article  Google Scholar 

  • Duke T, Novère NL, Bray D (2001) Conformational spread in a ring of proteins: a stochastic approach to allostery. J Mol Biol 308:541–553

    Article  Google Scholar 

  • Enciso G (2013) Multisite mechanisms for ultrasensitivity in signal transduction. In: Poetsche C, Kloeden P (eds) Nonautonomous and random dynamical systems in life sciences. Lecture notes in mathematical biology. Springer, Berlin

    Google Scholar 

  • Ferrell J (1996) Tripping the switch fantastic: how a protein kinase cascade can convert graded inputs into switch-like outputs. Trends Biochem Sci 21(12):460–466

    Article  Google Scholar 

  • Ferrell J (2009) Q &A: Cooperativity. J Biol 8:53.1-53.6

  • Ghaemmaghami S, Huh W, Bower K, Howson R, Belle A, Dephoure N, O’Shea E, Weissman J (2003) Global analysis of protein expression in yeast. Nature 425:737–741

    Article  Google Scholar 

  • Goldbeter A, Koshland D (1981) An amplified sensitivity arising from covalent modification in biological systems. Proc Natl Acad Sci USA 78(11):6840–6844

    Article  MathSciNet  Google Scholar 

  • Goldbeter A, Koshland D (1984) Ultrasensitivity in biochemical systems controlled by covalent modification: interplay between zero-order and multistep effects. J Biol Chem 259(14):441–447

    Google Scholar 

  • Gunawardena J (2005) Multisite protein phosphorylation makes a good threshold but can be a poor switch. Proc Natl Acad Sci USA 102(41):14,617–14,622

    Google Scholar 

  • Hansen C, Sourjik V, Wingreen N (2010) A dynamic signaling-team model for chemotaxis receptors in Escherichia coli. Proc Natl Acad Sci USA 107:17,170–17,175

    Google Scholar 

  • Harmer R, Danos V, Feret J, Krivine J, Fontana W (2010) Intrinsic information carriers in combinatorial dynamical systems. Chaos 20(037):108

    MathSciNet  Google Scholar 

  • Herzog F, Hill J (1946) The Bernstein polynomials for discontinuous functions. Am J Math 68(1):109–124

    Article  MathSciNet  MATH  Google Scholar 

  • Huang C, Ferrell J (1996) Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA 93:10,078–10,083

    Google Scholar 

  • Iakoucheva L, Radivojac P, Brown C, O’Connor T, Sikes J, Obradovic Z, Dunker A (2004) The importance of intrinsic disorder for protein phosphorylation. Nucl Acids Res 32:1037–1049

    Article  Google Scholar 

  • Keener J, Sneyd J (2008) Mathematical physiology. Cellular physiology, vol I. Springer, Berlin

    Google Scholar 

  • Koshland D, Nemethy G, Filmer D (1966) Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5:365–385

    Article  Google Scholar 

  • Lenz P, Swain P (2006) An entropic mechanism to generate highly cooperative and specific binding from protein phosphorylations. Curr Biol 16:2150–2155

    Article  Google Scholar 

  • Levchenko A (2003) Allovalency: A case of molecular entanglement. Curr Biol 13:R876–R878

    Article  Google Scholar 

  • Liu X, Bardwell L, Nie Q (2010) A combination of multisite phosphorylation and substrate sequestration produces switch-like responses. Biophys J 98(8):1396–1407

    Article  Google Scholar 

  • Malleshaiah MK, Shahrezaei V, Swain PS, Michnick SW (2010) The scaffold protein ste5 directly controls a switch-like mating decision in yeast. Nature 465(7294):101–105

    Article  Google Scholar 

  • McLaughlin S, Aderem A (1995) The myristoyl-electrostatic switch: a modulator of reversible protein-membrane interactions. Trends Biochem Sci 20:272–276

    Article  Google Scholar 

  • Monod J, Wyman J, Changeux J (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–118

    Article  Google Scholar 

  • Murray D, Hermida-Matsumoto L, Buser C, Tsang J (1998) Electrostatics and the membrane association of Src: theory and experiment. Biochemistry 37:2145–2159

    Article  Google Scholar 

  • Ogawa S, McConnell H (1967) Spin-label study of hemoglobin conformations in solution. Proc Natl Acad Sci USA 58:19–26

    Article  Google Scholar 

  • O’Shaughnessy E, Palani S, Collins J, Sarkar C (2011) Tunable signal processing in synthetic map kinase cascades. Cell 144:119–131

    Article  Google Scholar 

  • Pryciak P, Huntress F (1998) Membrane recruitment of the kinase cascade scaffold protein Ste5 by the Gbeta gamma complex underlies activation of the yeast pheromone response pathway. Genes Dev 12(17):2684–2697

    Article  Google Scholar 

  • Rivlin T (2003) An introduction to the approximation of functions, chapter 1. Dover Phoenix Editions. Dover Publications, Dover

    Google Scholar 

  • Ryerson S, Enciso G (2013) Site variability in a multisite, signal transduction system (to appear)

  • Serber Z, Ferrell J (2007) Tuning bulk electrostatics to regulate protein function. Cell 128(3):441–444

    Article  Google Scholar 

  • Sourjik V, Berg H (2004) Functional interactions between receptors in bacterial chemotaxis. Nature 428:437–441

    Article  Google Scholar 

  • Spiro P, Parkinson J, Othmer H (1997) A model of excitation and adaptation in bacterial chemotaxis. Proc Natl Acad Sci USA 94(14):7263–7268

    Article  Google Scholar 

  • Strickfaden S, Winters M, Ben-Ari G, Lamson R, Tyers M, Pryciak P (2007) A mechanism for cell-cycle regulation of MAP kinase signaling in a yeast differentiation pathway. Cell 128(3):519–531

    Article  Google Scholar 

  • Tindall M, Porter S, Maini P, Gaglia G, Armitage J (2008) Overview of mathematical approaches used to model bacterial chemotaxis I: the single cell. Bull Math Biol 70:1525–1569

    Article  MathSciNet  MATH  Google Scholar 

  • Wadhams G, Armitage J (2004) Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 5(12):1024–1037

    Article  Google Scholar 

  • Wang L, Nie Q, Enciso G (2010) Nonessential sites improve phosphorylation switch. Biophys J 99(6):L41–L43

    Article  Google Scholar 

  • Yi TM, Huang Y, Simon M, Doyle J (2000) Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc Natl Acad Sci USA 97(9):4649–4653

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Ned Wingreen for discussions and criticism, and Uri Alon for useful comments and advice. This material is based upon work supported by the National Science Foundation under Grants Nos. DMS-1122478 and 1129008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Germán A. Enciso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryerson, S., Enciso, G.A. Ultrasensitivity in independent multisite systems. J. Math. Biol. 69, 977–999 (2014). https://doi.org/10.1007/s00285-013-0727-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-013-0727-x

Keywords

Mathematics Subject Classification (2010)

Navigation