Skip to main content

Advertisement

Log in

Dynamic hematological disease: a review

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We review the basic characteristics of four periodic hematological disorders (periodic auto-immune hemolytic anemia, cyclical thrombocytopenia, cyclical neutropenia and periodic chronic myelogenous leukemia) and examine the role that mathematical modeling and numerical simulations have played in our understanding of the origin of these diseases and in the regulation of hematopoiesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adimy, M., Crauste, F.: Global stability of a partial differential equation with distributed delay due to cellular replication. Nonlinear Anal. 54, 1469–1491 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Adimy, M., Crauste, F.: Modeling and asymptotic stability of a growth factor-dependent stem cell dynamics model with distributed delay. Disc. Cont. Dyn. Syst. Ser B 8 (2007)

  3. Adimy, M., Crauste, F., Ruan, S.: A mathematical study of the hematopoiesis process with applications to chronic myelogenous leukemia. SIAM J. Appl. Math. 65 (2005)

  4. Adimy, M., Crauste, F., Ruan, S.: Stability and hopf bifurcation in a mathematical model of pluripotent stem cell dynamics. Nonlinear Anal. Real World Appl. 6, 651–670 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Adimy, M., Crauste, F., Ruan, S.: Modelling hematopoiesis mediated by growth factors with applications to periodic hematological diseases. Bull. Math. Biol. 68 (2006)

  6. Adimy, M., Pujo-Menjouet, L.: A singular transport model describing cellular division. C. R. Acad. Sci. Paris 332, 1071–1076 (2001)

    MATH  MathSciNet  Google Scholar 

  7. Adimy, M., Pujo-Menjouet, L.: A mathematical model describing cellular division with a proliferating phase duration depending on the maturity of cells. Electron. J. Diff. Equ. p. 14 (2003)

  8. Apostu, R., Mackey, M.: Understanding cyclical thrombocytopenia: A mathematical modeling approach. J. Theor. Biol. (2008) (in press)

  9. Balduini, C., Stella, C., Rosti, V., Bertolino, G., Noris, P., Ascari, E.: Acquired cyclic thrombocytopenia thrombocytosis with periodic defect of platelet function. Br. J. Haematol. 85, 718–722 (1993)

    Article  Google Scholar 

  10. Basu, S., Hodgson, G., Katz, M., Dunn, A.R.: Evaluation of role of G-CSF in the production, survival, and release of neutrophils from bone marrow into circulation. Blood 100(3), 854–861 (2002)

    Article  Google Scholar 

  11. Bélair, J., Mackey, M.: A model for the regulation of mammalian platelet production. Ann. N. Y. Acad. Sci. 504, 280–282 (1987)

    Article  Google Scholar 

  12. Bélair, J., Mackey, M., Mahaffy, J.: Age-structured and two-delay models for erythropoiesis. Math. Biosci. 128, 317–346 (1995)

    Article  MATH  Google Scholar 

  13. Bernard, J., Caen, J.: Purpura thrombopénique et megacaryocytopénie cycliques mensuels. Nouv. Rev. franc. Hémat. 2, 378–386 (1962)

    Google Scholar 

  14. Bernard, S., Belair, J., Mackey, M.: Oscillations in cyclical neutropenia: new evidence based on mathematical modeling. J. Theor. Biol. 223, 283–298 (2003)

    Article  MathSciNet  Google Scholar 

  15. Bessonov, N., Ducrot, A., Volpert, V.: Modeling of leukemia development in the bone marrow. In: Proceedings of the annual symposium on “Mathematics applied in biology and biophysics (Tom XLVIII, v.2) pp. 79–8 (2005)

  16. Bessonov, N., Pujo-Menjouet, L., Volpert, V.: Cell modeling of hematopoiesis. J. Math. Model. Nat. Phenomena 1 (2006)

  17. Beuter, A., Glass, L., Mackey, M., Titcombe, M.: Nonlinear Dynamics in Physiology and Medicine. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  18. Beutler, E., Lichtman, M.A., Coller, B.S., Kipps, T.: Williams Hematology. McGraw-Hill, New York (1995)

    Google Scholar 

  19. Blythe, S.P., Nisbet, R.M., Gurney, W.S.C.: The dynamics of population models with distributed maturation periods. Theor. Popul. Biol. 25, 289–311 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  20. Chikkappa, G., Borner, G., Burlington, H., Chanana, A.D., Cronkite, E.P., Ohl, S., Pavelec, M., Robertso, J.S.: Periodic oscillation of blood leukocytes, platelets, and reticulocytes in a patient with chronic myelocytic leukemia. Blood 47, 1023–1030 (1976)

    Google Scholar 

  21. Cohen, T., Cooney, D.P.: Cyclical thrombocytopenia: case report and review of literature. Scand. J. Haematol. 16, 133–138 (1974)

    Google Scholar 

  22. Colijn, C., Dale, D.C., Foley, C., Mackey, M.: Observations on the pathophysiology and mechanisms for cyclic neutropenia. Math. Model. Nat. Phenomena 1 (2006)

  23. Colijn, C., Foley, C., Mackey, M.: G-CSF treatment of canine cyclical neutropenia: a comprehensive mathematical model. Exp. Hematol. 35, 898–907 (2007)

    Article  Google Scholar 

  24. Colijn, C., Fowler, A., Mackey, M.C.: High frequency spikes in long period blood cell oscillations. J. Math. Biol. 53, 499–519 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Colijn, C., Mackey, M.: A mathematical model of hematopoiesis: I. Periodic chronic myelogenous leukemia. J. Theor. Biol. 237, 117–132 (2005)

    Article  MathSciNet  Google Scholar 

  26. Colijn, C., Mackey, M.: A mathematical model of hematopoiesis: II. Cyclical neutropenia. J. Theor. Biol. 237, 133–146 (2005)

    Article  MathSciNet  Google Scholar 

  27. Dan, K., Inokuchi, K., An, E., Nomura, T.: Cell mediated cyclic thrombocytopenia treated with azathioprine. Br. J. Haematol. 77, 365–379 (1991)

    Article  Google Scholar 

  28. Ducrot, A., Volpert, V.: On a model of leukemia development with a spatial cell distribution. J. Math. Model. Nat. Phenomena (2008) (in press)

  29. Dunn, C.D.R.: Cyclic hematopoiesis: the biomathematics. Exp. Hematol. 11, 779–791 (1983)

    Google Scholar 

  30. Dyson, J., Villela-Bressan, Webb, G.: An age and maturity structured model of cell population dynamics. In: Horn, M., Simonnett, G., Webb, G.F. (eds.) Mathematical models in medical and health science, pp. 99–16 (1998)

  31. Eller, J., Györi, I., Zollei, J., Krizsa, F.: Modelling thrombopoiesis regulation I: Model description and simulation results. Comput. Math. Appl. 14, 841–848 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  32. Engel, C., Scholz, M., Loeffler, M.A.: Computational model of human granulopoiesis to simulate the hematotoxic effects of multicycle polychemotherapy. Blood 104, 2323–2331 (2004)

    Article  Google Scholar 

  33. Engstrom, K., Lundquist, A., Soderstrom, N.: Periodic thrombocytopenia or tidal platelet dysgenesis in a man. Scand. J. Haematol. 3, 290–(1966)

    Article  Google Scholar 

  34. Fargue, D.: Reductibilité des systèmes héréditaires à des systémes dynamiques. Comptes Rendus de l’Académie des Sci B277, 471–473 (1973)

    MathSciNet  Google Scholar 

  35. Fargue, D.: Reductibilité des systèmes héréditaires. Inter. J. Nonlinear Mech. 9, 331–338 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  36. Fisher, G.: An introduction to chaos theory and some haematological applications. Comp. Haematol. Int. 3, 43–51 (1993)

    Article  Google Scholar 

  37. Foley, C., Bernard, S., Mackey, M.: Cost-effective G-CSF therapy strategies for cyclical neutropenia: Mathematical modelling based hypotheses. J. Theor. Biol. 238, 754–763 (2006)

    Article  MathSciNet  Google Scholar 

  38. Fortin, P., Mackey, M.: Periodic chronic myelogenous leukemia: spectral analysis of blood cell counts and etiological implications. Brit. J. Haematol. 104, 336–245 (1999)

    Article  Google Scholar 

  39. Glass, L., Mackey, M.: From Clocks to Chaos: The Rhythms of Life. Princeton University Press, Princeton (1988)

    MATH  Google Scholar 

  40. Gray, W., Kirk, J.: Analysis by analogue and digital computers of the bone marrow stem cell and platelet control mechanisms. In: Proceedings on conference on computers for analysis and control in medical and biological research, pp. 120–24. IEEE, UK (1971)

  41. Grignani, F.: Chronic myelogenous leukemia. Crit. Rev. Oncology-Hematol 4, 31–66 (1985)

    Google Scholar 

  42. Guerry, D., Dale, D., Omine, D.C., Perry, S., Wolff, S.M.: Periodic hematopoiesis in human cyclic neutropenia. J. Clin. Invest. 52, 3220–3230 (1973)

    Article  Google Scholar 

  43. Györi, I., Eller, J.: Modelling thrombopoiesis regulation II: Mathematical investigation of the model. Comput. Math. Appl. 14, 849–859 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  44. Hammond, W.P., Price, T.H., Souza, L.M., Dale, D.C.: Treatment of cyclic neutropenia with granulocyte colony stimulating factor. N. Eng. J. Med. 320, 1306–1311 (1989)

    Article  Google Scholar 

  45. Hardee, M.E., Arcasoy, M.O., Blackwell, K.L., Kirkpatrick, J.P., Dewhirst, M.W.: Erythropoietin biology in cancer. Clin. Cancer Res. 12(2), 332–39 (2006). doi:10.1158/1078-0432.CCR-05-1771 URL http://clincancerres.aacrjournals.org/cgi/content/abstract/12/2/332

  46. Haurie, C., Dale, D.C., Rudnicki, R., Mackey, M.C.: Modeling complex neutrophil dynamics in the grey collie. J. Theor. Biol. 204, 504–519 (2000)

    Article  Google Scholar 

  47. Haurie, C., Mackey, M.C., Dale, D.C.: Cyclical neutropenia and other periodic hematological diseases: a review of mechanisms and mathematical models. Blood 92, 2629–2640 (1998)

    Google Scholar 

  48. Haurie, C., Mackey, M.C., Dale, D.C.: Occurrence of periodic oscillations in the differential blood counts of congenital, idiopathic and cyclical neutropenic patients before and during treatment with G-CSF. Exp. Hematol. (1999)

  49. Haurie, C., Person, R., Dale, D.C., Mackey, M.: Haematopoietic dynamics in grey collies. Exp. Hematol. 27, 1139–1148 (1999)

    Article  Google Scholar 

  50. Hearn, T., Haurie, C., Mackey, M.: Cyclical neutropenia and the peripherial control of white blood cell production. J. Theor. Biol. 192, 167–181 (1998)

    Article  Google Scholar 

  51. Henderson, E.S., Lister, T.A., Greaves, M.F. (eds.): Leukemia. Saunders (1996)

  52. Hoffman, R., Bridell, R., van Besien, K., Srour, E., Guscar, T., Hudson, N., Ganser, A.: Acquired cyclic amegakaryocytic thrombocytopenia associated with an immunoglobulin blocking the action of granulocyte-macrophage colony-stimulating factor. N. Engl. J. Med. 321, 97–102 (1989)

    Article  Google Scholar 

  53. Kaushansky, K., Lin, N., Grossmann, A., Humes, J., Sprugel, K., Broudy, V.: Thrombopoietin expands erythroid, granulocyte-macrophage, and megakaryocyte progenitor cells in normal and myelosuppressed mice. Exp. Hematol. 24, 256–269 (1996)

    Google Scholar 

  54. Kazarinoff, N.D., van den Driessche, P.: Control of oscillations in hematopoiesis. Science 203, 1348–1350 (1979)

    Article  MathSciNet  Google Scholar 

  55. Kearns, C.M., Wang, W.C., Stute, N., Ihle, J.N., Evans, W.E.: Disposition of recombinant human granulocyte colony stimulating factor in children with severe chronic neutropenia. J. Pediatr. 123, 471–479 (1993)

    Article  Google Scholar 

  56. Kimura, F., Nakamura, Y., Sato, K., Wakimoto, N., Kato, T., Tahara, T., Yamada, M., Nagata, N., Motoyoshi, K.: Cyclic change of cytokines in a patient with cyclic thrombocytopenia. Br. J. Haematol. 94, 171–174 (1996)

    Article  Google Scholar 

  57. King-Smith, E.A., Morley, A.: Computer simulation of granulopoiesis: normal and impaired granulopoiesis. Blood 36, 254–262 (1970)

    Google Scholar 

  58. Koury, M., Bondurant, M.: The mechanisms of erythropoietin action. Am. J. Kidney Dis. 18, 20–23 (1991)

    Google Scholar 

  59. Lasota, A., Mackey, M.: Global asymptotic properties of proliferating cell populations. J. Math. Biol. 19, 43–62 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  60. Lewis, M.L.: Cyclic thrombocytopenia: a thrombopoietin deficiency. J. Clin. Path. 27, 242–246 (1974)

    Article  Google Scholar 

  61. Loeffler, M., Pantel, K.: A mathematical model of erythropoiesis suggests an altered plasma volume control as cause for anemia in aged mice. Exp. Gerontol. 25, 483–495 (1990)

    Article  Google Scholar 

  62. Loeffler, M., Pantel, K., Wulff, H., Wichmann, H.: A mathematical model of erythropoiesis in mice and rats, part i: Structure of the model. Cell Tissue Kinet. 22, 13–20 (1989)

    Google Scholar 

  63. Lord, B.I., Bronchud, M.H., Owens, S., Chang, J., Howell, A., Souza, L., Dexter, T.M.: The kinetics of human granulopoiesis following treatment with granulocyte colony stimulating factor in vivo. Proc. Natl. Acad. Sci. USA 86, 9499–9503 (1989)

    Article  Google Scholar 

  64. MacDonald, N.: Cyclical neutropenia: Models with two cell types and two time lags. In: Valleron, A., Macdonald, P.(eds) Biomathematics and Cell Kinetics., pp. 287–295. Elsevier/North-Holland, Amsterdam (1978)

    Google Scholar 

  65. MacDonald, N.: Time Lags in Biological Models. Springer, Heidelberg (1978)

    MATH  Google Scholar 

  66. Mackey, M., Rudnicki, A.: Global stability in a delayed partial differential equation describing cellular replication. J. Math. Biol. 33, 89–109 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  67. Mackey, M.C.: A unified hypothesis for the origin of aplastic anemia and periodic haematopoiesis. Blood 51, 941–956 (1978)

    Google Scholar 

  68. Mackey, M.C.: Dynamic haematological disorders of stem cell origin. In: Vassileva-Popova, J.G., Jensen, E.V.(eds) Biophysical and Biochemical Information Transfer in Recognition., pp. 373–409. Plenum, New York (1979)

    Google Scholar 

  69. Mackey, M.C.: Periodic auto-immune hemolytic anemia: an induced dynamical disease. Bull. Math. Biol. 41, 829–834 (1979)

    MATH  MathSciNet  Google Scholar 

  70. Mackey, M.C., Glass, L.: Oscillations and chaos in physiological control systems. Science 197, 287–289 (1977)

    Article  Google Scholar 

  71. Mahaffy, J., Belair, J., Mackey, M.: Hematopoietic model with moving boundary condition and state dependent delay: applications in erythropoiesis. J. Theor. Biol. 190, 135–146 (1998)

    Article  Google Scholar 

  72. Mahaffy, J.M., Bélair, J., Mackey, M.: Hematopoietic model with moving boundary condition and state dependent delay. J. Theor. Biol. 190, 135–146 (1998)

    Article  Google Scholar 

  73. Melo, J.: The diversity of BCR–ABL fusion proteins and their relationship to leukemia phenotype. Blood 88, 2375 (1996)

    Google Scholar 

  74. Mempel, K., Pietsch, T., Menzel, T., Zeidler, C., Welte, K.: Increased serum levels of granulocyte colony stimulating factor in patients with severe congenital neutropenia. Blood 77, 1919–1922 (1991)

    Google Scholar 

  75. Morley, A.: A platelet cycle in normal individuals. Aust. Ann. Med. 18, 127–129 (1969)

    Google Scholar 

  76. Morley, A.: Cyclic hemopoiesis and feedback control. Blood Cells 5, 283–296 (1979)

    Google Scholar 

  77. Morley, A., King-Smith, E.A., Stohlman, F.: The oscillatory nature of hemopoiesis. In: Stohlman, F. (ed.) Hemopoietic Cellular Proliferation, pp. 3–4. Grune & Stratton, New York (1969)

  78. Morley, A., Stohlman, F.: Cyclophosphamide induced cyclical neutropenia. N. Engl. J. Med. 282, 643–646 (1970)

    Article  Google Scholar 

  79. O’Dwyer, M., Druker, B.J., Mauro, M., Talpaz, M., Resta, D., Peng, B., Buchdunger, E., Ford, J., Reese, S.F., Capdeville, R., Sawyers, C.L.: STI571: a tyrosine kinase inhibitor for the treatment of CML. Ann. Oncol. 11, 155 (2000)

    Google Scholar 

  80. Orr, J.S., Kirk, J., Gray, K., Anderson, J.: A study of the interdependence of red cell and bone marrow stem cell populations. Br. J. Haematol. 15, 23–24 (1968)

    Article  Google Scholar 

  81. Ostby, I., Kvalheim, G., Rusten, L.S., Grottum, P.: Mathematical modeling of granulocyte reconstitution after high-dose chemotherapy with stem cell support: effect of posttransplant G-CSF treatment. J. Theor. Biol. 231, 69–83 (2004)

    Article  MathSciNet  Google Scholar 

  82. Ostby, I., Rusten, L.S., Kvalheim, G., Grottum, P.: A mathematical model for reconstitution of granulopoiesis after high dose chemotherapy with autologous stem cell transplantation. J. Math. Biol. 47, 101–136 (2003)

    Article  MathSciNet  Google Scholar 

  83. Palmer, S.E., Stephens, K., Dale, D.C.: Genetics, phenotype, and natural history of autosomal dominant cyclichematopoiesis. Am. J. Med. Genet. 66, 413–422 (1996)

    Article  Google Scholar 

  84. Price, T.H., Chatta, G.S., Dale, D.C.: Effect of recombinant granulocyte colony stimulating factor on neutrophil kinetics in normal young and elderly humans. Blood 88, 335–340 (1996)

    Google Scholar 

  85. Pujo-Menjouet, L., Bernard, S., Mackey, M.: Long period oscillations in a G 0 model of hematopoietic stem cells. SIAM J. Appl. Dyn. Syst. 4, 312–32 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  86. Pujo-Menjouet, L., Mackey, M.: Contribution to the study of periodic chronic myelogenous leukemia. C. R. Biol. 327, 235–244 (2004)

    Article  Google Scholar 

  87. Ranlov, P., Videbaek, A.: Cyclic haemolytic anaemia synchronous with Pel-Ebstein fever in a case of Hodgkin’s disease. Acta Med. Scand. 100 (1963)

  88. Reeve, J.: An analogue model of granulopoiesis for the analysis of isotopic and other data obtained in the non-steady state. Br. J. Haematol. 25, 15–32 (1973)

    Article  Google Scholar 

  89. Ritchie, A., Gotoh, A., Gaddy, J., Braun, S., Broxmeyer, H.: Thrombopoietin upregulates the promoter conformation of p53 in a proliferation-independent manner coincident with a decreased expression of bax: potential mechanisms for survival enhancing effects. Blood 90, 4394–4402 (1997)

    Google Scholar 

  90. Roeder, I.: Quantitative stem cell biology: computational studies in the hematopoietic system. Curr. Opin. Hematol. 13, 222–228 (2006)

    Article  Google Scholar 

  91. Rubinow, S., Lebowitz, J.: A mathematical model of neutrophil production and control in normal man. J. Math. Biol. 1, 187–225 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  92. Santillan, M., Mahaffy, J., Belair, J., Mackey, M.: Regulation of platelet production: the normal response to perturbation and cyclical platelet disease. J. Theor. Biol. 206, 585–603 (2000)

    Article  Google Scholar 

  93. Schmitz, S.: Ein mathematisches modell der zyklischen haemopoese. Ph.D. thesis, Universitat Koln (1988)

  94. Schmitz, S., Franke, H., Brusis, J., Wichmann, H.E.: Quantification of the cell kinetic effects of G-CSF using a model of human granulopoiesis. Exp. Hematol. 21, 755–760 (1993)

    Google Scholar 

  95. Schmitz, S., Franke, H., Loeffler, M., Wichmann, H.E., Diehl, V.: Reduced variance of bone-marrow transit time of granulopoiesis: a possible pathomechanism of human cyclic neutropenia. Cell Prolif. 27, 655–667 (1994)

    Article  Google Scholar 

  96. Schmitz, S., Franke, H., Wichmann, H.E., Diehl, V.: The effect of continuous G-CSF application in human cyclic neutropenia: a model analysis. Br. J. Haematol. 90, 41–47 (1995)

    Article  Google Scholar 

  97. Schmitz, S., Loeffler, M., Jones, J.B., Lange, R.D., Wichmann, H.E.: Synchrony of bone marrow proliferation and maturation as the origin of cyclic haemopoiesis. Cell Tissue Kinet. 23, 425–441 (1990)

    Google Scholar 

  98. Scholz, M., Engel, C., Loeffler, M.: Modelling human granulopoiesis under polychemotherapy with G-CSF support. J. Math. Biol. 50, 397–439 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  99. Shvitra, D., Laugalys, R., Kolesov, Y.S.: Mathematical modeling of the production of white blood cells. In: G. Marchuk, L. Belykh (eds.) Mathematical Modeling in Immunology and Medicine, pp. 211–23. North-Holland, Amsterdam (1983)

  100. Skomorovski, K., Agur, Z.: A new method for predicting and optimizing thrombopoietin (tpo) therapeutic protocols in thrombocytopenic patients and in platelet donors [abstract]. Hematol.J. Suppl 1, 185 (2001)

    Google Scholar 

  101. Skomorovski, K., Harpak, H., Ianovski, A., Vardi, M., Visser, T., Hartong, S., van Vliet, H.H., Wagemaker, G., Agur, Z.: New tpo treatment schedules of increased safety and efficacy: pre-clinical validation of a thrombopoiesis simulation model. Br. J. Haematol 123, 683–691 (2003)

    Article  Google Scholar 

  102. Swinburne, J., Mackey, M.: Cyclical thrombocytopenia: characterization by spectral analysis and a review. J. Theor. Med. 2, 81–91 (2000)

    MATH  Google Scholar 

  103. Takatani, H., Soda, H., Fukuda, M., Watanabe, M., Kinoshita, A., Nakamura, T., Oka, M.: Levels of recombinant human granulocyte colony stimulating factor in serum are inversely correlated with circulating neutrophil counts. Antimicrob. Agents Chemother. 40, 988–991 (1996)

    Google Scholar 

  104. Vainstein, V., Ginosara, Y., Shohamb, M., Ranmara, D., Ianovskib, A., Agur, Z.: The complex effect of granulocyte colony-stimulating factor on human granulopoiesis analyzed by a new physiologically based mathematical model. J. Theor. Biol. 234(3), 311–327 (2005)

    Article  Google Scholar 

  105. Viswanathan, S., Zandstra, P.W.: Towards predictive models of stem cell fate. Cytotechnology 41, 75–92 (2003)

    Article  Google Scholar 

  106. von Schulthess, G.K., Mazer, N.A.: Cyclic neutropenia (CN): a clue to the control of granulopoiesis. Blood 59, 27–37 (1982)

    Google Scholar 

  107. von Schulthess, G., Gessner, U.: Oscillating platelet counts in healthy individuals: experimental investigation and quantitative evaluation of thrombocytopoietic feedback control. Scand. J. Haematol. 36, 473–479 (1986)

    Article  Google Scholar 

  108. Watari, K., Asano, S., Shirafuji, N., Kodo, H., Ozawa, K., Takaku, F., Kamachi, S.: Serum granulocyte colony stimulating factor levels in healthy volunteers and patients with various disorders as estimated by enzyme immunoassay. Blood 73, 117–122 (1989)

    Google Scholar 

  109. Webb, G.: Theory of nonlinear age-dependent population dynamics. Monographs and Textbooks in Pure and Applied Mathematics, no. 89 (1985)

  110. Wichmann, H., Gerhardts, M., Spechtmeyer, H., Gross, R.: A mathematical model of thrombopoiesis in the rat. Cell Tissue Kinet. 12, 551–567 (1979)

    Google Scholar 

  111. Wichmann, H.E., Loeffler, M., Schmitz, S.: A concept of hemopoietic regulation and its biomathematical realization. Blood Cells 14, 411–429 (1988)

    Google Scholar 

  112. Yanabu, M., Nomura, S., Fukuroi, T., Kawakatsu, T., Kido, H., Yamaguchi, K., Suzuki, M., Kokawa, T., Yasunaga, K.: Periodic production of antiplatelet autoantibody directed against GP IIIa in cyclic thrombocytopenia. Acta Haematol. 89, 155–159 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Foley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foley, C., Mackey, M.C. Dynamic hematological disease: a review. J. Math. Biol. 58, 285–322 (2009). https://doi.org/10.1007/s00285-008-0165-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-008-0165-3

Keywords

Mathematics Subject Classification (2000)

Navigation