Skip to main content
Log in

Computing the heteroclinic bifurcation curves in predator–prey systems with ratio-dependent functional response

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Predator–prey models with Michaelis–Menten–Holling type ratio- dependent functional response exhibit very rich and complex dynamical behavior, such as the existence of degenerate equilibria, appearance of limit cycles and heteroclinic loops, and the coexistence of two attractive equilibria. In this paper, we study heteroclinic bifurcations of such a predator–prey model. We first calculate the higher order Melnikov functions by transforming the model into a Hamiltonian system and then provide an algorithm for computing higher order approximations of the heteroclinic bifurcation curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arditi R. and Ginzburg L.R. (1989). Coupling in predator–prey dynamics: ratio-dependence. J. Theor. Biol. 139: 311–326

    Article  Google Scholar 

  2. Berezovskaya F., Karev G. and Arditi R. (2001). Parametric analysis of the ratio-dependent predator–prey model. J. Math. Biol. 43: 221–246

    Article  MATH  MathSciNet  Google Scholar 

  3. Burden R.L. and Faires J.D. (2001). Numerical Analysis, 7th edn. Thomson Learning Inc., Boston

    Google Scholar 

  4. Davis P.J. and Rabinowitz P. (1975). Methods of Numerical Integtation. Academic Press, New York

    Google Scholar 

  5. Du Z. and Zhang W. (2005). Melnikov method for homoclinic bifurcation in nonlinear impact oscillators. Comput. Math. Appl. 50: 445–458

    Article  MATH  MathSciNet  Google Scholar 

  6. Ermentrout, B.: Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students. SIAM, Pheladelphia (2002)

  7. Guckenheimer J. and Holmes P. (1983). Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, New York

    MATH  Google Scholar 

  8. Hsu S.-B., Hwang T.-W. and Kuang Y. (2001). Global analysis of the Michaelis–Menten-type ratio-dependent predator–prey system. J. Math. Biol. 42: 489–506

    Article  MATH  MathSciNet  Google Scholar 

  9. Kuang Y. and Beretta E. (1998). Global qualitative analysis of a ratio-dependent predator–prey system. J. Math. Biol. 36: 389–406

    Article  MATH  MathSciNet  Google Scholar 

  10. Li B. and Kuang Y. (2007). Heteroclinic bifurcation in the Michaelis–Menten type ratio-dependent predator–prey system. SIAM J. Appl. Math. 67: 1453–1464

    Article  MATH  MathSciNet  Google Scholar 

  11. Li B.-Y. and Zhang Z.-F. (1995). A note on a result of G. S. Petrov about the weakened 16th Hilbert problem.. J. Math. Anal. Appl. 190: 489–516

    Article  MATH  MathSciNet  Google Scholar 

  12. Poggiale, J.C.: Applications des variétés invariantes á la modélisation de l’hétérogénéité en dynamique des populations. Thése, Université de Bourgogne, France (1992)

  13. Sanders J.A. (1982). Melnikov’s method and averaging. Celest. Mech. 28: 171–181

    Article  MATH  MathSciNet  Google Scholar 

  14. Tang Y. and Zhang W. (2005). Heteroclinic bifurcation in a ratio-dependent predator–prey system. J. Math. Biol. 50: 699–712

    Article  MATH  MathSciNet  Google Scholar 

  15. Hermerik L., Boer M.P., Kooi B.W. and Voorn G.A.K. van (2007). Heteroclitic orbits indicate overexploitation in predator–prey systems with a strong Allee effect. Math. Biosci. 209: 451–469

    Article  MATH  MathSciNet  Google Scholar 

  16. Xiao D. and Ruan S. (2001). Global dynamics of a ratio-dependent predator–prey system. J. Math. Biol. 43: 268–290

    Article  MATH  MathSciNet  Google Scholar 

  17. Zhang Z.-F. and Li B.-Y. (1992). High order Melnikov functions and the problem of uniformity in global bifurcation. Ann. Mat. Pura Appl. CLXI: 181–212

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigui Ruan.

Additional information

S. Ruan research was supported by NSF grant DMS-0715772.

W. Zhang research was supported by NSFC(China), TRAPOYT, CPSF and China MOE Research Grants.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruan, S., Tang, Y. & Zhang, W. Computing the heteroclinic bifurcation curves in predator–prey systems with ratio-dependent functional response. J. Math. Biol. 57, 223–241 (2008). https://doi.org/10.1007/s00285-007-0153-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-007-0153-z

Keywords

Mathematics Subject Classification (2000)

Navigation