Skip to main content
Log in

Sphingomicrobium clamense sp. nov., Isolated from Sediment of Clam Island Beach in China

  • Short Communication
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A Gram-stain-negative, non-flagellated, aerobic, ovoid or rod-shaped bacterium with motility, designated B8T, was isolated from the sediment of Clam Island beach, Liaoning province, China. The optimum growth of strain B8T occurred at 35 oC, pH 7.0, and in the presence of 4.0–5.0% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain B8T formed a distinct lineage within the genus Sphingomicrobium and was closely related to Sphingomicrobium nitratireducens O-35T (98.3% sequence similarity), Sphingomicrobium aestuariivivum KCTC 42286T (96.9%), and Sphingomicrobium astaxanthinifaciens JCM 18551T (96.5%). The digital DNA–DNA hybridization and average nucleotide identity values between strain B8T and closely related strains were lower than 21.0% and 78.0%, much lower than the cutoff values of 70.0% and 95.0%, respectively, for bacterial species delineation. The dominant respiratory quinone of strain B8T was ubiquinone-10. The major fatty acids were Sum In Feature 8 (C18:1ω7c and/or C18:1ω6c), Sum In Feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C17:1ω6c, C18:1 2-OH, and C16:0. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid, glycolipids, and four unknown polar lipids. The DNA G + C content of strain B8T was 63.9%. Based on the phenotypic, phylogenetic, and chemotaxonomic analyses, strain B8T is considered a new species of Sphingomicrobium, for which the name Sphingomicrobium clamense sp. nov. is proposed. The type strain is B8T (= CGMCC 1.19486T = KCTC 92052T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Data Availability

The GenBank/EMBL/DDBJ accession numbers of the 16S rRNA gene and the draft genome sequences of strain B8T are OR042996 and JAHVAH000000000, respectively. This article and the supplementary information files include all other data generated or analyzed during this study.

Code Availability

Not applicable.

References

  1. Kämpfer P, Arun AB, Young CC, Busse HJ, Kassmannhuber J, Rosselló-Móra R, Geueke B, Rekha PD, Chen WM (2012) Sphingomicrobium lutaoense gen. nov., sp. nov., isolated from a coastal hot spring. Int J Syst Evol Microbiol 62:1326–1330. https://doi.org/10.1099/ijs.0.034413-0

    Article  CAS  PubMed  Google Scholar 

  2. Shahina M, Hameed A, Lin SY, Hsu YH, Liu YC, Cheng IC, Lee MR, Lai WA, Lee RJ, Young CC (2013) Sphingomicrobium astaxanthinifaciens sp. nov., an astaxanthin-producing glycolipid-rich bacterium isolated from surface seawater and emended description of the genus Sphingomicrobium. Int J Syst Evol Microbiol 63:3415–3422. https://doi.org/10.1099/ijs.0.047704-0

    Article  CAS  PubMed  Google Scholar 

  3. Shahina M, Hameed A, Lin SY, Hsu YH, Liu YC, Huang YM, Lin JC, Young CC (2013) Sphingomicrobium marinum sp. nov. and Sphingomicrobium flavum sp. nov., isolated from surface seawater, and emended description of the genus Sphingomicrobium. Int J Syst Evol Microbiol 63:4469–4476. https://doi.org/10.1099/ijs.0.052837-0

    Article  CAS  PubMed  Google Scholar 

  4. Park S, Park JM, Sun Joo E, Won SM, Kyum Kim M, Yoon JH (2015) Sphingomicrobium aestuariivivum sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 65:2678–2683. https://doi.org/10.1099/ijs.0.000320

    Article  CAS  PubMed  Google Scholar 

  5. You H, Xu L, Kong YH, Sun C, Zhou P, Xu XW (2022) Sphingomicrobium nitratireducens sp. nov., isolated from a tidal flat in Guangxi. Arch Microbiol 204:671–678. https://doi.org/10.1007/s00203-022-03273-2

    Article  CAS  PubMed  Google Scholar 

  6. Kim CH, Yoo Y, Khim JS, Xu X, Kim B, Choi IG, Kim JJ (2023) Sphingomicrobium sediminis sp. nov., isolated from marine sediment in the Republic of Korea. Int J Syst Evol Microbiol 73. https://doi.org/10.1099/ijsem.0.005847

  7. Zhang Q, Kanjanasuntree R, Kim JH, Yoon JH, Sukhoom A, Kantachote D, Kim W (2018) Sphingomicrobium arenosum sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 68:2551–2556. https://doi.org/10.1099/ijsem.0.002875

    Article  CAS  PubMed  Google Scholar 

  8. Felföldi T, Somogyi B, Marialigeti K, Vörös L (2009) Characterization of photoautotrophic picoplankton assemblages in turbid, alkaline lakes of the Carpathian Basin (Central Europe). J Limnol 68:385–395. https://doi.org/10.4081/jlimnol.2009.385

    Article  Google Scholar 

  9. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. https://doi.org/10.1099/ijsem.0.001755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. https://doi.org/10.1093/nar/22.22.4673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  PubMed  Google Scholar 

  13. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376. https://doi.org/10.1007/bf01734359

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Rzhetsky A, Nei M (1992) Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. J Mol Evol 35:367–375. https://doi.org/10.1007/bf00161174

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

    Article  PubMed  Google Scholar 

  16. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. https://doi.org/10.1007/bf01731581

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Schubert M, Lindgreen S, Orlando L (2016) AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res Notes 9:88–94. https://doi.org/10.1186/s13104-016-1900-2

    Article  PubMed  PubMed Central  Google Scholar 

  18. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1:18–23. https://doi.org/10.1186/2047-217x-1-18

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108. https://doi.org/10.1093/nar/gkm160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genom 9:75–89. https://doi.org/10.1186/1471-2164-9-75

    Article  CAS  Google Scholar 

  22. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:W182–185. https://doi.org/10.1093/nar/gkm321

    Article  PubMed  PubMed Central  Google Scholar 

  23. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/s0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  24. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055. https://doi.org/10.1101/gr.186072.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Na SI, Kim YO, Yoon SH, Ha SM, Baek I, Chun J (2018) UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 56:280–285. https://doi.org/10.1007/s12275-018-8014-6

    Article  CAS  PubMed  Google Scholar 

  26. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:1–14. https://doi.org/10.1186/1471-2105-14-60

    Article  Google Scholar 

  27. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M (2022) TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 50:D801–D807. https://doi.org/10.1093/nar/gkab902

    Article  CAS  PubMed  Google Scholar 

  28. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J (2017) A large-scale evaluation of algorithms to calculate average nucleotide identity. Anton Leeuw Int J G 110:1281–1286. https://doi.org/10.1007/s10482-017-0844-4

    Article  CAS  Google Scholar 

  29. Dong X, Cai M (2001) Determinative manual for routine bacteriology (English translation). Scientific, Beijing

    Google Scholar 

  30. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. (MIDI Technical note 101. MIDI), Newark, DE

    Google Scholar 

  31. Tindall B (1990) A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130. https://doi.org/10.1016/S0723-2020(11)80158-X

    Article  CAS  Google Scholar 

  32. Kates M (1986) Lipid extraction procedures. Techniques of lipidology: isolation, analysis and identification of lipids.:106–107

  33. Busse J, Auling G (1988) Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 11:1–8. https://doi.org/10.1016/S0723-2020(88)80040-7

    Article  CAS  Google Scholar 

  34. Busse H-J, Bunka S, Hensel A, Lubitz W (1997) Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Evol Microbiol 47:698–708. https://doi.org/10.1099/00207713-47-3-698

    Article  CAS  Google Scholar 

  35. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91. https://doi.org/10.1099/ijs.0.64483-0

    Article  CAS  PubMed  Google Scholar 

  36. Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 106:19126–19131. https://doi.org/10.1073/pnas.0906412106

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  37. Fuchs G, Boll M, Heider J (2011) Microbial degradation of aromatic compounds - from one strategy to four. Nat Rev Microbiol 9:803–816. https://doi.org/10.1038/nrmicro2652

    Article  CAS  PubMed  Google Scholar 

  38. Teufel R, Mascaraque V, Ismail W, Voss M, Perera J, Eisenreich W, Haehnel W, Fuchs G (2010) Bacterial phenylalanine and phenylacetate catabolic pathway revealed. Proc Natl Acad Sci U S A 107:14390–14395. https://doi.org/10.1073/pnas.1005399107

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  39. Jiao M, He W, Ouyang Z, Shi Q, Wen Y (2022) Progress in structural and functional study of the bacterial phenylacetic acid catabolic pathway, its role in pathogenicity and antibiotic resistance. Front Microbiol 13:964019. https://doi.org/10.3389/fmicb.2022.964019

    Article  PubMed  PubMed Central  Google Scholar 

  40. Harwood CS, Parales RE (1996) The beta-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50:553–590. https://doi.org/10.1146/annurev.micro.50.1.553

    Article  CAS  PubMed  Google Scholar 

  41. Buchan A, Collier LS, Neidle EL, Moran MA (2000) Key aromatic-ring-cleaving enzyme, protocatechuate 3,4-dioxygenase, in the ecologically important marine Roseobacter lineage. Appl Environ Microbiol 66:4662–4672. https://doi.org/10.1128/aem.66.11.4662-4672.2000

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ohlendorf DH, Lipscomb JD, Weber PC (1988) Structure and assembly of protocatechuate 3,4-dioxygenase. Nature 336:403–405. https://doi.org/10.1038/336403a0

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Wells T Jr., Ragauskas AJ (2012) Biotechnological opportunities with the β-ketoadipate pathway. Trends Biotechnol 30:627–637. https://doi.org/10.1016/j.tibtech.2012.09.008

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We introduce our sincere thanks and gratitude to Anhui University for supporting and providing the requirements of scientific research.

Funding

This work was supported by the Special Foundation for National Science and Technology Basic Research Program of China (NO. 2019FY100706), the Science Fund for Distinguished Young Scholars of Anhui Province (No. 2008085J12), and the Science and Technology Major Project of Anhui Province (No. 202103a06020006).

Author information

Authors and Affiliations

Authors

Contributions

XL, LLM, YFZ, and ZMZ performed the experiments. XL, LLM, and YFZ wrote the manuscript. YZX and ZMF designed the study and revised the manuscript. All the authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Zemin Fang.

Ethics declarations

Ethics Approval

No animals or human participants were included in the present study.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declared that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Mu, L., Zhang, Y. et al. Sphingomicrobium clamense sp. nov., Isolated from Sediment of Clam Island Beach in China. Curr Microbiol 81, 104 (2024). https://doi.org/10.1007/s00284-024-03639-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-024-03639-3

Keywords

Navigation