Skip to main content
Log in

Exploring the Hot Springs of Golan: A Source of Thermophilic Bacteria and Enzymes with Industrial Promise

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

In recent years, there has been a surge in research on extremophiles due to their remarkable ability to survive in harsh environments. Extremophile thermophilic bacteria provide thermostable enzymes for biotechnology and industry. Thermophilic bacteria live in extreme environments like hot springs at 45–80 °C. This study screens and isolates thermophilic bacteria and thermozymes from the Golan hot springs in Karakocan, Elazig, Turkey. The study also characterizes thermophilic bacteria and their thermozymes to understand their features and applications better. Golan hot spring water samples at 50 °C yielded 12 isolates. GKE 02, 07, 08, and 10 produce amylase, GKE 04, 08, and 11 cellulase, and GKE 06 xylanase. One isolate (GKE 08) displayed both amylolytic and cellulolytic activity on agar plates. GKE 02 had the highest plate assay amylolytic index (2.3) and amylase activity (67.87 U/ml). Plate assay indicates GKE 08 has 1.5 amylolytic index, 1.1 cellulolytic index, 38.57 U/ml amylase, and 6.81 U/ml cellulase. GKE 04 had the greatest cellulolytic index (1.7) and cellulase activity (27.46). GKE 06, the only xylanase producer, has 19.67 U/ml activity and 1.4 plate assay index. The investigation also included determining the optimal pH and temperature conditions for each enzyme. 16S rDNA gene sequencing revealed seven thermozyme-producing bacteria Bacillus, Geobacillus, and Thermomonas. Thermomonas hydrothermalis genome annotation showed glycosyl hydrolase genes for amylolytic and cellulolytic activity. The findings of this study on thermophilic bacteria and thermostable enzyme synthesis in the Golan hot springs are promising, particularly for T. hydrothermalis, which has limited research on its potential as a thermozyme producer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kuddus M, Bano N (2022) Microbial screening for extremozymes. In: Microbial extremozymes, Elsevier, Amsterdam, pp 1–7. https://doi.org/10.1016/B978-0-12-822945-3.00006-3

  2. Ghosh S, Lepcha K, Basak A, Mahanty AK (2020) Thermophiles and thermophilic hydrolases. In: Physiological and biotechnological aspects of extremophiles. Elsevier, Amsterdam, pp 219–236. https://doi.org/10.1016/B978-0-12-818322-9.00016-2

  3. Kumar S, Dangi AK, Shukla P, Baishya D, Khare SK (2019) Thermozymes: adaptive strategies and tools for their biotechnological applications. Bioresour Technol 278:372–382. https://doi.org/10.1016/j.biortech.2019.01.088

    Article  CAS  PubMed  Google Scholar 

  4. Nadaroglu H, Polat MS (2022) Microbial extremozymes: Novel sources and industrial applications. In: Microbial extremozymes. Elsevier, Amsterdam, pp 67–88. https://doi.org/10.1016/B978-0-12-822945-3.00019-1

  5. Loperena L, Soria V, Varela H, Lupo S, Bergalli A, Guigou M, Pellegrino A, Bernardo A, Calvino A, Rivas F (2012) Extracellular enzymes produced by microorganisms isolated from maritime Antarctica. World J Microbiol Biotechnol 28(5):2249–2256. https://doi.org/10.1007/s11274-012-1032-3

    Article  CAS  PubMed  Google Scholar 

  6. Soy S, Nigam VK, Sharma SR (2019) Cellulolytic, amylolytic and xylanolytic potential of thermophilic isolates of Surajkund hot spring. J Biosci 44(5):1–12. https://doi.org/10.1007/s12038-019-9938-7

    Article  CAS  Google Scholar 

  7. Madhavan A, Sindhu R, Binod P, Sukumaran RK, Pandey A (2017) Strategies for design of improved biocatalysts for industrial applications. Bioresour Technol 245:1304–1313. https://doi.org/10.1016/j.biortech.2017.05.031

    Article  CAS  PubMed  Google Scholar 

  8. Hosseini SM, Aziz HA (2013) Evaluation of thermochemical pretreatment and continuous thermophilic condition in rice straw composting process enhancement. Bioresour Technol 133:240–247. https://doi.org/10.1016/j.biortech.2013.01.098

    Article  CAS  PubMed  Google Scholar 

  9. Tanyildizi MS, Elibol M, Özer D (2006) Optimization of growth medium for the production of α-amylase from Bacillus amyloliquefaciens using response surface methodology. J Chem Technol Biotechnol 81(4):618–622. https://doi.org/10.1002/jctb.1445

    Article  CAS  Google Scholar 

  10. Naili B, Sahnoun M, Bejar S, Kammoun R (2016) Optimization of submerged Aspergillus oryzae S2 α-amylase production. Food Sci Biotechnol 25(1):185–192. https://doi.org/10.1007/s10068-016-0028-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bohra V, Tikariha H, Dafale NA (2019) Genomically defined Paenibacillus polymyxa ND24 for efficient cellulase production utilizing sugarcane bagasse as a substrate. Appl Biochem Biotechnol 187:266–281. https://doi.org/10.1007/s12010-018-2820-5

    Article  CAS  PubMed  Google Scholar 

  12. Henrissat B, Callebaut I, Fabrega S, Lehn P, Mornon J-P, Davies G (1995) Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc Natl Acad Sci USA 92:7090–7094. https://doi.org/10.1073/pnas.92.15.7090

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dalmaso GZL, Ferreira D, Vermelho AB (2015) Marine extremophiles: a source of hydrolases for biotechnological applications. Mar Drugs 13:1925–1965. https://doi.org/10.3390/md13041925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Harley JP, Prescott LM (2002) Laboratory exercises in microbiology. McGraw-Hill, New York

    Google Scholar 

  15. Caglayan P, Birbir M, Sánchez-Porro C, Ventosa A (2017) Screening of industrially important enzymes produced by moderately halophilic bacteria isolated from salted sheep skins of diverse origin. J Am Leather Chem Assco 112:207–216

    CAS  Google Scholar 

  16. Johnson TR (2004) Laboratory experiments in microbiology. Benjamin/Cummings, Redwood City

    Google Scholar 

  17. Harley JP, Prescott LM (1996) Laboratory exercises in microbiology. WCB/ McGraw-Hill, Boston

    Google Scholar 

  18. Vaikundamoorthy R, Rajendran R, Selvaraju A, Moorthy K, Perumal S (2018) Development of thermostable amylase enzyme from Bacillus cereus for potential antibiofilm activity. Bioorg Chem 77:494–506. https://doi.org/10.1016/j.bioorg.2018.02.014

    Article  CAS  PubMed  Google Scholar 

  19. Kasana RC, Salwan R, Dhar H, Dutt S, Gulati A (2008) A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Curr Microbiol 57(5):503–507. https://doi.org/10.1007/s00284-008-9276-8

    Article  CAS  PubMed  Google Scholar 

  20. Meddeb-Mouelhi F, Moisan JK, Beauregard M (2014) A comparison of plate assay methods for detecting extracellular cellulase and xylanase activity. Enzyme Microb Technol 66:16–19. https://doi.org/10.1016/j.enzmictec.2014.07.004

    Article  CAS  PubMed  Google Scholar 

  21. Nagar S, Mittal A, Gupta VK (2012) A cost effective method for screening and isolation of xylan degrading bacteria using agro waste material. Asian J Biol Sci 5:384–394. https://doi.org/10.3923/ajbs.2012

    Article  Google Scholar 

  22. Gazali FM, Ananda M, Suwastika IN (2018) Characterization of α-amylase activity from thermophilic bacteria isolated from Bora Hot spring, Central Sulawesi. Nat Sci J Sci Technol. https://doi.org/10.22487/25411969.2018.v7.i1.9923

    Article  Google Scholar 

  23. Cordeiro CAM, Martins MLL, Luciano AB, Silva RFd (2002) Production and properties of Xylanase from thermophilic Bacillus sp. Braz Arch Biol Technol 45:413–418. https://doi.org/10.1590/S1516-89132002000600002

    Article  CAS  Google Scholar 

  24. Jamilah I, Meryandini A, Rusmana I, Suwanto A, Mubarik NR (2009) Activity of proteolytic and amylolytic enzymes from Bacillus spp. isolated from shrimp ponds. Microbiol Indones 3(2):4–4. https://doi.org/10.5454/mi.3.2.4

    Article  Google Scholar 

  25. Adesina F, Onilude A (2013) Isolation, identification and screening of xylanase and glucanase-producing microfungi from degrading wood in Nigeria. Afr J Agric Res 8:4414–4421. https://doi.org/10.5897/AJAR2013.6993

    Article  CAS  Google Scholar 

  26. Islam F, Roy N (2018) Screening, purification and characterization of cellulase from cellulase producing bacteria in molasses. BMC Res Notes 11(1):1–6. https://doi.org/10.1186/s13104-018-3558-4

    Article  CAS  Google Scholar 

  27. Bernfeld B (1955) Amylases α and α. Methods Enzymol 1:149–158

    Article  CAS  Google Scholar 

  28. Classics Lowry O, Rosebrough N, Farr A, Randall R (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275. https://doi.org/10.1016/S0021-9258(19)52451-6

    Article  Google Scholar 

  29. Gazali F, Suwastika I (2018) Thermostable. J Phys Conf Ser 979:012001

    Article  Google Scholar 

  30. Lane D (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York

    Google Scholar 

  31. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gaur R, Tiwari S (2015) Isolation, production, purification and characterization of an organic–solvent-thermostable alkalophilic cellulase from Bacillus vallismortis RG-07. BMC Biotechnol 15(1):1–12. https://doi.org/10.1186/s12896-015-0129-9

    Article  CAS  Google Scholar 

  33. Brock TD (2012) Thermophilic microorganisms and life at high temperatures. Springer, New York

    Google Scholar 

  34. Inan K, Canakci S, Beldüz AO (2011) Isolation and characterization of xylanolytic new strains of Anoxybacillus from some hot springs in Turkey. Turk J Biol 35:529–542. https://doi.org/10.3906/biy-1003-75

    Article  CAS  Google Scholar 

  35. Narayan VV, Hatha MA, Morgan HW, Rao D (2008) Isolation and characterization of aerobic thermophilic bacteria from the Savusavu hot springs in Fiji. Microbes Environ 23(4):350–352. https://doi.org/10.1264/jsme2.ME08105

    Article  PubMed  Google Scholar 

  36. Mohammad BT, Al Daghistani HI, Jaouani A, Abdel-Latif S, Kennes C (2017) Isolation and characterization of thermophilic bacteria from Jordanian hot springs: Bacillus licheniformis and Thermomonas hydrothermalis isolates as potential producers of thermostable enzymes. Int J Microbiol. https://doi.org/10.1155/2017/6943952

    Article  PubMed  PubMed Central  Google Scholar 

  37. Masi C, Tebiso A, Kumar KS (2023) Isolation and characterization of potential multiple extracellular enzyme-producing bacteria from waste dumping area in Addis Ababa. Heliyon. https://doi.org/10.1016/j.heliyon.2022.e12645

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cavello I, Urbieta MS, Segretin AB, Giaveno A, Cavalitto S, Donati ER (2018) Assessment of keratinase and other hydrolytic enzymes in thermophilic bacteria isolated from geothermal areas in Patagonia Argentina. Geomicrobiol J 35:156–165. https://doi.org/10.1080/01490451.2017.1339144

    Article  CAS  Google Scholar 

  39. Mohamed SA, Al-Malki AL, Kumosani TA (2009) Partial purification and characterization of five α-amylases from a wheat local variety (Balady) during germination. Aust J Basic Appl Sci 3:1740–1748

    CAS  Google Scholar 

  40. Igarashi K, Hatada Y, Hagihara H, Saeki K, Takaiwa M, Uemura T, Ara K, Ozaki K, Kawai S, Kobayashi T (1998) Enzymatic properties of a novel liquefying α-amylase from an alkaliphilic Bacillus isolate and entire nucleotide and amino acid sequences. Appl Environ Microbiol 64(9):3282–3289. https://doi.org/10.1128/AEM.64.9.3282-3289.1998

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Parmar D, Pandya A (2012) Characterization of amylase producing bacterial isolates. Bull Environ Pharmacol Life Sci 1(6):42–47

    Google Scholar 

  42. Singh P, Kumari P (2016) Isolation and characterization of amylase producing Bacillus spp. from selected soil sample. IJRBS 5(2):24–29

    CAS  Google Scholar 

  43. Goyal N, Gupta J, Soni S (2005) A novel raw starch digesting thermostable α-amylase from Bacillus sp. I-3 and its use in the direct hydrolysis of raw potato starch. Enzyme Microb Technol 37(7):723–734. https://doi.org/10.1016/j.enzmictec.2005.04.017

    Article  CAS  Google Scholar 

  44. Li Y, Liu C, Bai F, Zhao X (2016) Overproduction of cellulase by Trichoderma reesei RUT C30 through batch-feeding of synthesized low-cost sugar mixture. Bioresour Technol 216:503–510. https://doi.org/10.1016/j.biortech.2016.05.108

    Article  CAS  PubMed  Google Scholar 

  45. Quereshi S, Naiya TK, Mandal A, Dutta S (2020) Residual sugarcane bagasse conversion in India: current status, technologies, and policies. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-020-00871-2

    Article  Google Scholar 

  46. Mandels M (1975) Microbial sources of cellulase. In: Biotechnology and bioengineering symposium, pp 81–105

  47. Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29(1):3–23. https://doi.org/10.1016/j.femsre.2004.06.005

    Article  CAS  PubMed  Google Scholar 

  48. Alves MP, Rainey FA, Nobre MF, da Costa MS (2003) Thermomonas hydrothermalis sp. nov., a new slightly thermophilic γ-proteobacterium isolated from a hot spring in central Portugal. Syst Appl Microbiol 26(1):70–75. https://doi.org/10.1078/072320203322337335

    Article  CAS  PubMed  Google Scholar 

  49. Abdollahi P, Ghane M, Babaeekhou L (2021) Isolation and characterization of thermophilic bacteria from Gavmesh Goli hot spring in Sabalan geothermal field, Iran: Thermomonas hydrothermalis and Bacillus altitudinis isolates as a potential source of thermostable protease. Geomicrobiol J 38(1):87–95. https://doi.org/10.1080/01490451.2020.1812774

    Article  CAS  Google Scholar 

  50. Baltaci MO, Genc B, Arslan S, Adiguzel G, Adiguzel A (2017) Isolation and characterization of thermophilic bacteria from geothermal areas in Turkey and preliminary research on biotechnologically important enzyme production. Geomicrobiol J 34(1):53–62. https://doi.org/10.1080/01490451.2015.1137662

    Article  CAS  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songül Yaşar Yildiz.

Ethics declarations

Conflict of interest

The author has no competing interests to declare that are relevant to the content of this article.

Human and animal rights

The article does not contain any studies related to human participants or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaşar Yildiz, S. Exploring the Hot Springs of Golan: A Source of Thermophilic Bacteria and Enzymes with Industrial Promise. Curr Microbiol 81, 101 (2024). https://doi.org/10.1007/s00284-024-03617-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-024-03617-9

Navigation