Skip to main content
Log in

Green-Synthesized Silver Nanoparticles in the Prevention of Multidrug-Resistant Proteus mirabilis Infection and Incrustation of Urinary Catheters BioAgNPs Against P. mirabilis Infection

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

This study aimed to assess the activity of AgNPs biosynthesized by Fusarium oxysporum (bio-AgNPs) against multidrug-resistant uropathogenic Proteus mirabilis, and to assess the antibacterial activity of catheters coated with bio-AgNPs. Broth microdilution and time-kill kinetics assays were used to determine the antibacterial activity of bio-AgNPs. Catheters were coated with two (2C) and three (3C) bio-AgNPs layers using polydopamine as crosslinker. Catheters were challenged with urine inoculated with P. mirabilis to assess the anti-incrustation activity. MIC was found to be 62.5 µmol l-1, causing total loss of viability after 4 h and bio-AgNPs inhibited biofilm formation by 76.4%. Catheters 2C and 3C avoided incrustation for 13 and 20 days, respectively, and reduced biofilm formation by more than 98%, while the pristine catheter was encrusted on the first day. These results provide evidence for the use of bio-AgNPs as a potential alternative to combat of multidrug-resistant P. mirabilis infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ (2015) Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol 13:269–284. https://doi.org/10.1038/nrmicro3432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Holling N, Lednor D, Tsang S et al (2014) Elucidating the genetic basis of crystalline biofilm formation in Proteus mirabilis. Infect Immun 82:1616–1626. https://doi.org/10.1128/IAI.01652-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schaffer JN, Pearson MM (2015) Proteus mirabilis and urinary tract infections. Microbiol Spectr. https://doi.org/10.1128/microbiolspec.UTI-0017-2013

    Article  PubMed  Google Scholar 

  4. Norsworthy AN, Pearson MM (2017) From catheter to kidney stone: the uropathogenic lifestyle of Proteus mirabilis. Trends Microbiol 25:304–315. https://doi.org/10.1016/j.tim.2016.11.015

    Article  CAS  PubMed  Google Scholar 

  5. Rai MK, Deshmukh SD, Ingle AP, Gade AK (2012) Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria: activity of silver nanoparticles against MDR bacteria. J Appl Microbiol 112:841–852. https://doi.org/10.1111/j.1365-2672.2012.05253.x

    Article  CAS  PubMed  Google Scholar 

  6. Neethu S, Midhun SJ, Radhakrishnan EK, Jyothis M (2018) Green synthesized silver nanoparticles by marine endophytic fungus Penicillium polonicum and its antibacterial efficacy against biofilm forming, multidrug-resistant Acinetobacter baumanii. Microb Pathog 116:263–272. https://doi.org/10.1016/j.micpath.2018.01.033

    Article  CAS  PubMed  Google Scholar 

  7. Dakal TC, Kumar A, Majumdar RS, Yadav V (2016) Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol. https://doi.org/10.3389/fmicb.2016.01831

    Article  PubMed  PubMed Central  Google Scholar 

  8. Scandorieiro S, de Camargo LC, Lancheros CAC et al (2016) Synergistic and additive effect of oregano essential oil and biological silver nanoparticles against multidrug-resistant bacterial strains. Front Microbiol. https://doi.org/10.3389/fmicb.2016.00760

    Article  PubMed  PubMed Central  Google Scholar 

  9. Park TJ, Lee KG, Lee SY (2016) Advances in microbial biosynthesis of metal nanoparticles. Appl Microbiol Biotechnol 100:521–534. https://doi.org/10.1007/s00253-015-6904-7

    Article  CAS  PubMed  Google Scholar 

  10. Durán N, Nakazato G, Seabra AB (2016) Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: an overview and comments. Appl Microbiol Biotechnol 100:6555–6570. https://doi.org/10.1007/s00253-016-7657-7

    Article  CAS  PubMed  Google Scholar 

  11. Ding YH, Floren M, Tan W (2016) Mussel-inspired polydopamine for bio-surface functionalization. Biosurf Biotribol 2:121–136. https://doi.org/10.1016/j.bsbt.2016.11.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Swartjes JJTM, Sharma PK, Kooten TG et al (2015) Current developments in antimicrobial surface coatings for biomedical applications. CMC 22:2116–2129. https://doi.org/10.2174/0929867321666140916121355

    Article  CAS  Google Scholar 

  13. Su L, Yu Y, Zhao Y et al (2016) Strong antibacterial polydopamine coatings prepared by a shaking-assisted method. Sci Rep 6:24420. https://doi.org/10.1038/srep24420

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu Y, Ai K, Lu L (2014) Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev 114:5057–5115. https://doi.org/10.1021/cr400407a

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Zhou J, Xiong Q, Ma J et al (2016) Polydopamine-enabled approach toward tailored plasmonic nanogapped nanoparticles: from nanogap engineering to multifunctionality. ACS Nano 10:11066–11075. https://doi.org/10.1021/acsnano.6b05951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fourie G, Steenkamp ET, Ploetz RC et al (2011) Current status of the taxonomic position of Fusarium oxysporum formae specialis cubense within the Fusarium oxysporum complex. Infect Genet Evol 11:533–542. https://doi.org/10.1016/j.meegid.2011.01.012

    Article  CAS  PubMed  Google Scholar 

  17. Khan MA, Khan SA, Waheed U et al (2021) Morphological and genetic characterization of Fusarium oxysporum and its management using weed extracts in cotton. J King Saud Univ - Sci 33:101299. https://doi.org/10.1016/j.jksus.2020.101299

    Article  Google Scholar 

  18. Raeder U, Broda P (1985) Rapid preparation of DNA from filamentous fungi. Lett Appl Microbiol 1:17–20. https://doi.org/10.1111/j.1472-765X.1985.tb01479.x

    Article  CAS  Google Scholar 

  19. White TJ, Bruns T, Lee S et al (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc: Guide Methods Appl 18:315–322

    Google Scholar 

  20. O’Donnell K, Cigelnik E, Nirenberg HI (1998) Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia 90:465–493. https://doi.org/10.1080/00275514.1998.12026933

    Article  Google Scholar 

  21. O’Donnell K, Gueidan C, Sink S et al (2009) A two-locus DNA sequence database for typing plant and human pathogens within the Fusarium oxysporum species complex. Fungal Genet Biol 46:936–948. https://doi.org/10.1016/j.fgb.2009.08.006

    Article  CAS  PubMed  Google Scholar 

  22. Lombard L, Sandoval-Denis M, Lamprecht SC, Crous PW (2019) Epitypification of Fusarium oxysporum – clearing the taxonomic chaos. Persoonia 43:1–47. https://doi.org/10.3767/persoonia.2019.43.01

    Article  CAS  PubMed  Google Scholar 

  23. Noriler SA, Savi DC, Aluizio R et al (2018) Bioprospecting and structure of fungal endophyte communities found in the brazilian biomes, pantanal, and cerrado. Front Microbiol 9:1526. https://doi.org/10.3389/fmicb.2018.01526

    Article  PubMed  PubMed Central  Google Scholar 

  24. Noriler SA, Savi DC, Ponomareva LV et al (2019) Vochysiamides A and B: two new bioactive carboxamides produced by the new species diaporthe vochysiae. Fitoterapia 138:104273. https://doi.org/10.1016/j.fitote.2019.104273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maryani N, Lombard L, Poerba YS et al (2019) Phylogeny and genetic diversity of the banana Fusarium wilt pathogen Fusarium oxysporum f. sp. cubense in the Indonesian centre of origin. Stud Mycol 92:155–194. https://doi.org/10.1016/j.simyco.2018.06.003

    Article  CAS  PubMed  Google Scholar 

  26. Wang MM, Crous PW, Sandoval-Denis M et al (2022) Fusarium and allied genera from China: species diversity and distribution. Persoonia 48:1–53. https://doi.org/10.3767/persoonia.2022.48.01

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ronquist F, Teslenko M, Van Der Mark P et al (2012) MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. https://doi.org/10.1093/sysbio/sys029

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ariyawansa HA, Hawksworth DL, Hyde KD et al (2014) Epitypification and neotypification: guidelines with appropriate and inappropriate examples. Fungal Divers 69:57–91. https://doi.org/10.1007/s13225-014-0315-4

    Article  Google Scholar 

  29. Durán N, Marcato PD, Alves OL et al (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:8. https://doi.org/10.1186/1477-3155-3-8

    Article  Google Scholar 

  30. Clinical and Laboratory Standards Institute (2015) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: M07-A10 ; approved standard, 10. ed. Committee for Clinical Laboratory Standards, Wayne, PA

  31. Barry AL, Craig WA, Nadler H et al (1999) Methods for determining bactericidal activity of antimicrobial agents. Approv Guidel 19:1–3

    Google Scholar 

  32. Bazargani MM, Rohloff J (2016) Antibiofilm activity of essential oils and plant extracts against Staphylococcus aureus and Escherichia coli biofilms. Food Control 61:156–164. https://doi.org/10.1016/j.foodcont.2015.09.036

    Article  CAS  Google Scholar 

  33. Chaieb K, Kouidhi B, Jrah H et al (2011) Antibacterial activity of thymoquinone, an active principle of Nigella sativa and its potency to prevent bacterial biofilm formation. BMC Complement Altern Med 11:29. https://doi.org/10.1186/1472-6882-11-29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang R, Neoh KG, Kang E et al (2015) Antifouling coating with controllable and sustained silver release for long-term inhibition of infection and encrustation in urinary catheters. J Biomed Mater Res 103:519–528. https://doi.org/10.1002/jbm.b.33230

    Article  CAS  Google Scholar 

  35. Gholami-Shabani M, Akbarzadeh A, Norouzian D et al (2014) Antimicrobial activity and physical characterization of silver nanoparticles green synthesized using nitrate reductase from Fusarium oxysporum. Appl Biochem Biotechnol 172:4084–4098. https://doi.org/10.1007/s12010-014-0809-2

    Article  CAS  PubMed  Google Scholar 

  36. Raza M, Kanwal Z, Rauf A et al (2016) Size- and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nanomaterials 6:74. https://doi.org/10.3390/nano6040074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Składanowski M, Golinska P, Rudnicka K et al (2016) Evaluation of cytotoxicity, immune compatibility and antibacterial activity of biogenic silver nanoparticles. Med Microbiol Immunol 205:603–613. https://doi.org/10.1007/s00430-016-0477-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Srinivasan R, Vigneshwari L, Rajavel T et al (2018) Biogenic synthesis of silver nanoparticles using Piper betle aqueous extract and evaluation of its anti-quorum sensing and antibiofilm potential against uropathogens with cytotoxic effects: an in vitro and in vivo approach. Environ Sci Pollut Res 25:10538–10554. https://doi.org/10.1007/s11356-017-1049-0

    Article  CAS  Google Scholar 

  39. Swarnavalli GCJ, Dinakaran S, Raman N et al (2017) Bio inspired synthesis of monodispersed silver nano particles using Sapindus emarginatus pericarp extract – Study of antibacterial efficacy. J Saudi Chem Soc 21:172–179. https://doi.org/10.1016/j.jscs.2015.03.004

    Article  CAS  Google Scholar 

  40. Dhas SP, John SP, Mukherjee A, Chandrasekaran N (2014) Autocatalytic growth of biofunctionalized antibacterial silver nanoparticles: nanobiosynthesis of antibacterial AgNPs. Biotechnol Appl Biochem. https://doi.org/10.1002/bab.1161

    Article  PubMed  Google Scholar 

  41. Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4:707–716. https://doi.org/10.1016/j.actbio.2007.11.006

    Article  CAS  PubMed  Google Scholar 

  42. Landini P (2009) Cross-talk mechanisms in biofilm formation and responses to environmental and physiological stress in Escherichia coli. Res Microbiol 160:259–266. https://doi.org/10.1016/j.resmic.2009.03.001

    Article  CAS  PubMed  Google Scholar 

  43. Hoffman LR, D’Argenio DA, MacCoss MJ et al (2005) Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436:1171–1175. https://doi.org/10.1038/nature03912

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Aka ST, Haji SH (2015) Sub-MIC of antibiotics induced biofilm formation of Pseudomonas aeruginosa in the presence of chlorhexidine. Braz J Microbiol 46:149–154. https://doi.org/10.1590/S1517-838246120140218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gambino M, Cappitelli F (2016) Mini-review: biofilm responses to oxidative stress. Biofouling 32:167–178. https://doi.org/10.1080/08927014.2015.1134515

    Article  CAS  PubMed  Google Scholar 

  46. Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. IJN 12:1227–1249. https://doi.org/10.2147/IJN.S121956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cho EJ, Holback H, Liu KC et al (2013) Nanoparticle characterization: state of the art, challenges, and emerging technologies. Mol Pharm 10:2093–2110. https://doi.org/10.1021/mp300697h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bhatia S (2016) Natural Polymer Drug Delivery Systems. Springer International Publishing, Cham

    Book  Google Scholar 

  49. Perikamana SKM, Shin YM, Lee JK et al (2017) Graded functionalization of biomaterial surfaces using mussel-inspired adhesive coating of polydopamine. Colloids Surf, B 159:546–556. https://doi.org/10.1016/j.colsurfb.2017.08.022

    Article  CAS  Google Scholar 

  50. Milo S, Thet NT, Liu D et al (2016) An in-situ infection detection sensor coating for urinary catheters. Biosens Bioelectron 81:166–172. https://doi.org/10.1016/j.bios.2016.02.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rani SA, Celeri C, Najafi R et al (2016) Irrigation with N, N-dichloro-2,2-dimethyltaurine (NVC-422) in a citrate buffer maintains urinary catheter patency in vitro and prevents encrustation by Proteus mirabilis. Urolithiasis 44:247–256. https://doi.org/10.1007/s00240-015-0811-3

    Article  CAS  PubMed  Google Scholar 

  52. Morgan SD, Rigby D, Stickler DJ (2009) A study of the structure of the crystalline bacterial biofilms that can encrust and block silver Foley catheters. Urol Res 37:89–93. https://doi.org/10.1007/s00240-009-0176-6

    Article  CAS  PubMed  Google Scholar 

  53. Pickard R, Lam T, MacLennan G et al (2012) Antimicrobial catheters for reduction of symptomatic urinary tract infection in adults requiring short-term catheterisation in hospital: a multicentre randomised controlled trial. The Lancet 380:1927–1935. https://doi.org/10.1016/S0140-6736(12)61380-4

    Article  CAS  Google Scholar 

Download references

Funding

This study was financed by the Coordination for the Improvement of Higher Education Personnel—Brazil (CAPES) Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. GIAS, GHMG, SAN, GFR and AGOd: Material preparation, data collection and analysis were performed. AGdO, GN and SPDR: The first draft of the manuscript was written, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sergio Paulo Dejato Rocha.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of University State of Londrina (CEP-UEL 1.590.120).

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent to Publication

All authors listed in this manuscript provide their consent for publication of the research article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1669 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saikawa, G.I.A., Guidone, G.H.M., Noriler, S.A. et al. Green-Synthesized Silver Nanoparticles in the Prevention of Multidrug-Resistant Proteus mirabilis Infection and Incrustation of Urinary Catheters BioAgNPs Against P. mirabilis Infection. Curr Microbiol 81, 100 (2024). https://doi.org/10.1007/s00284-024-03616-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-024-03616-w

Navigation