Skip to main content
Log in

Genome-Based Reclassification of Anoxybacillus geothermalis Filippidou et al. 2016 as a Later Heterotypic Synonym of Anoxybacillus rupiensis Derekova et al. 2007

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

In this study, our aim was to elucidate the relationship between Anoxybacillus rupiensis DSM 17127T and Anoxybacillus geothermalis GSsed3T through whole-genome phylogenetic analysis. The obtained 16S rRNA gene sequence from the genome of A. rupiensis DSM 17127T exhibited a 99.8% similarity with A. geothermalis GSsed3T. In the phylogenetic trees constructed using whole-genome sequences and 16S rRNA gene sequences, A. rupiensis DSM 17127T and A. geothermalis GSsed3T were observed to form a clade, indicating a close relationship between them. Moreover, the average amino acid identity, average nucleotide identity, and digital DNA–DNA hybridization values calculated between A. rupiensis DSM 17127T and A. geothermalis GSsed3T exceeded the threshold values typically used for species demarcation. Furthermore, the phylogenomic analysis based on the core genome of the strains in question provided additional support for the formation of a monophyletic clade by A. rupiensis DSM 17127T and A. geothermalis GSsed3T. Most phenotypic and chemotaxonomic features between both strains were almost identical except for a few exceptions. These findings suggest that both strains should be classified as belonging to the same species, and we propose that A. geothermalis GSsed3T is a later heterotypic synonym of A. rupiensis DSM 17127T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pikuta E, Lysenko A, Chuvilskaya N, Mendrock U et al (2000) Anoxybacillus pushchinensis gen. nov., sp. nov., a novel anaerobic, alkaliphilic, moderately thermophilic bacterium from manure, and description of Anoxybacillus flavithermus comb. nov. Int J Syst Evol Microbiol 50:2109–2117. https://doi.org/10.1099/00207713-50-6-2109

    Article  CAS  PubMed  Google Scholar 

  2. Pikuta E, Cleland D, Tang J (2003) Aerobic growth of Anoxybacillus pushchinoensis K1T: emended descriptions of A. pushchinoensis and the genus Anoxybacillus. Int J Syst Evol Microbiol 53:1561–1562. https://doi.org/10.1099/ijs.0.02643-0

    Article  CAS  PubMed  Google Scholar 

  3. Liu GH, Rao MPN, Dong ZY, Wang JP, Che JM, Chen QQ, Sengonca C, Liu B, Li WJ (2019) Genome-based reclassifcation of Bacillus plakortidis Borchert et al. 2007 and Bacillus lehensis Ghosh et al. 2007 as a later heterotypic synonym of Bacillus oshimensis Yumoto et al. 2005; Bacillus rhizosphaerae Madhaiyan et al. 2011 as a later heterotypic synonym of Bacillus clausii Nielsen et al. 1995. Anton Leeuw 112:1725–1730. https://doi.org/10.1007/s10482-019-01299-z

    Article  CAS  Google Scholar 

  4. Rao MPN, Xiao M, Liu D, Tang R, Liu G, Li W (2022) Genome-based reclassifcation of Evansella polygoni as a later heterotypic synonym of Evansella clarkii and transfer of Bacillus shivajii and Bacillus tamaricis to the genus Evansella as Evansella shivajii comb. nov. and Evansella tamaricis comb. nov. Arch Microbiol 204:47. https://doi.org/10.1007/s00203-021-02720-w

    Article  CAS  Google Scholar 

  5. Derekova A, Sjøholm C, Mandeva R, Kambourova M (2007) Anoxybacillus rupiensis sp. nov., a novel thermophilic bacterium isolated from Rupi basin (Bulgaria). Extremophiles 11:577–583. https://doi.org/10.1007/s00792-007-0071-4

    Article  PubMed  Google Scholar 

  6. Euzeby JP (2008) Validation list no. 119. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 58:1–2

  7. Filippidou S, Jaussi M, Junier T et al (2016) Anoxybacillus geothermalis sp. nov., a facultatively anaerobic, endospore-forming bacterium isolated from mineral deposits in a geothermal station. Int J Syst Evol Microbiol 66:2944–2951. https://doi.org/10.1099/ijsem.0.001125

    Article  CAS  PubMed  Google Scholar 

  8. Wattam AR, Davis JJ, Assaf R et al (2017) Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acid Res 45:D535–D542. https://doi.org/10.1093/nar/gkw1017

    Article  CAS  PubMed  Google Scholar 

  9. Aziz RK, Bartels D, Best AAB et al (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75. https://doi.org/10.1186/1471-2164-9-75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. https://doi.org/10.1099/ijsem.0.001755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98. https://doi.org/10.14601/Phytopathol_Mediterr-14998u1.29

    Article  CAS  Google Scholar 

  12. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. https://doi.org/10.1093/nar/22.22.4673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. https://doi.org/10.1007/bf01731581

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  PubMed  Google Scholar 

  15. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376. https://doi.org/10.1007/bf01734359

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Meier-Kolthoff JP, Göker M (2019) TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 10(1):2182. https://doi.org/10.1038/s41467-019-10210-3

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60. https://doi.org/10.1186/1471-2105-14-60

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lee I, Ouk Kim Y, Park SC, Chun J (2016) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66(2):1100–1103. https://doi.org/10.1099/ijsem.0.000760

    Article  CAS  PubMed  Google Scholar 

  19. Yoon SH, Ha SM, Lim J, Kwon S, Chun J (2017) A large-scale evaluation of algorithms to calculate average nucleotide identity. Anton Leeuw 110(10):1281–2128. https://doi.org/10.1007/s10482-017-0844-4

    Article  CAS  Google Scholar 

  20. Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. https://doi.org/10.1093/bioinformatics/btu153

    Article  CAS  PubMed  Google Scholar 

  21. Price MN, Dehal PS, Arkin AP (2010) FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 5:e9490. https://doi.org/10.1371/journal.pone.0009490

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Arkin AP, Cottingham RW, Henry CS et al (2018) KBase: the United States department of energy systems biology knowledgebase. Nat Biotechnol 36:566–569. https://doi.org/10.1038/nbt.4163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li L, Stoeckert CJ, Roos DS (2003) OrthoMCL: identifcation of ortholog groups for eukaryotic genomes. Genome Res 13:2178–2189. https://doi.org/10.1101/gr.1224503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tindall BJ (1990) A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130. https://doi.org/10.1016/S0723-2020(11)80158-X

    Article  CAS  Google Scholar 

  25. Tindall BJ (1990) Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202. https://doi.org/10.1016/0378-1097(90)90282-U

    Article  CAS  Google Scholar 

  26. Tindall BJ, Sikorski J, Smibert RM, Krieg NR (2007) Phenotypic characterization and the principles of comparative systematics. In: Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM, Snyder LR (eds) Methods for general and molecular microbiology, 3rd edn. American Society for Microbiology, Washington, DC, pp 330–393. https://doi.org/10.1128/9781555817497.ch15

    Chapter  Google Scholar 

  27. Collins MD (1985) Analysis of isoprenoid quinones. Methods Microbiol 18:329–366. https://doi.org/10.1016/S0580-9517(08)70480-X

    Article  CAS  Google Scholar 

  28. Orata FD, Meier-Kolthoff JP, Sauvageau D, Stein LY (2018) Phylogenomic analysis of the gammaproteobacterial methanotrophs (order methylococcales) calls for the reclassification of members at the genus and species levels. Front Microbiol 9:3162. https://doi.org/10.3389/fmicb.2018.03162

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wayne LG, Brenner DJ, Colwell RR et al (1987) International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464. https://doi.org/10.1016/s0176-6724(88)80120-2

    Article  Google Scholar 

  30. Richter M, Rossello-Mora R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 06(45):19126–19131. https://doi.org/10.1073/pnas.0906412106

    Article  ADS  Google Scholar 

  31. Luo C, Rodriguez-R LM, Konstantinidis KT (2014) MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Res 42(8):e73. https://doi.org/10.1093/nar/gku169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Parker CT, Tindall BJ, Garrity GM (2019) International code of nomenclature of prokaryotes. Int J Syst Evol Microbiol 69(1A):S1–S111. https://doi.org/10.1099/ijsem.0.000778

    Article  Google Scholar 

  33. Lefort V, Desper R, Gascuel O (2015) FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 32:2798–2800. https://doi.org/10.1093/molbev/msv150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Farris JS (1972) Estimating phylogenetic trees from distance matrices. Am Nat 106(951):645–667. https://doi.org/10.1086/282802

    Article  Google Scholar 

Download references

Funding

This study was supported by Karadeniz Technical University (KTU BAP FAT-2019-7822).

Author information

Authors and Affiliations

Authors

Contributions

KIB designed the study. KIB, AOB, and SC performed genome analysis. KIB, HIB, and AN analyzed the data and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kadriye Inan Bektas.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 758 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inan Bektas, K., Nalcaoglu, A., Guler, H.İ. et al. Genome-Based Reclassification of Anoxybacillus geothermalis Filippidou et al. 2016 as a Later Heterotypic Synonym of Anoxybacillus rupiensis Derekova et al. 2007. Curr Microbiol 81, 102 (2024). https://doi.org/10.1007/s00284-024-03615-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-024-03615-x

Navigation