Skip to main content
Log in

Genome-based reclassification of Anoxybacillus salavatliensis Cihan et al. 2011 as a later heterotypic synonym of Anoxybacillus gonensis Belduz et al. 2003

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

In the present study, we aim to clarify the taxonomic positions of Anoxybacillus salavatliensis DSM 22626T and Anoxybacillus gonensis G2T by using whole genome phylogenetic analysis, biochemical and chemotaxonomic characteristics. The genome sequences of A. salavatliensis DSM 22626T was not available in any database, so it was sequenced in this study. In phylogenetic trees drawn using whole genome sequences and 16S rRNA gene sequences, A. salavatliensis DSM 22626T and A. gonensis G2T clade together and showed high sequence similarity (99.3%) based on 16S rRNA gene. The average amino acid identity, average nucleotide identity and digital DNA–DNA hybridization values between A. salavatliensis DSM 22626T and A. gonensis G2T were found to be greater than the threshold values for species demarcation. Further, the phylogenomic analysis based on the core genome of the strains under study confirmed that A. salavatliensis DSM 22626T and A. gonensis G2T formed a monophyletic clade. Most phenotypic and chemotaxonomic features between both strains were almost identical except for a few exceptions. The present results show that A. salavatliensis DSM 22626T is a later heterotypic synonym of A. gonensis G2T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arkin AP, Cottingham RW, Henry CS et al (2018) KBase: the United States department of energy systems biology knowledgebase. Nat Biotechnol 36:566–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aziz RK, Bartels D, Best AAB et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75. https://doi.org/10.1186/1471-2164-9-75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belduz AO, Dulger S, Demirbag Z (2003) Anoxybacillus gonensis sp. nov., a moderately thermophilic, xylose-utilizing, endospore-forming bacterium. Int J Syst Evol Microbiol 53:1315–1320

    Article  CAS  PubMed  Google Scholar 

  • Cihan AC, Ozcan B, Cokmus C (2011) Anoxybacillus salavatliensis sp. nov., an α-glucosidase producing, thermophilic bacterium isolated from Salavatli. Turk J Basic Microbiol 51:136–146

    Article  CAS  Google Scholar 

  • Collins MD (1985) Analysis of isoprenoid quinones. Methods Microbiol 18:329–366

    Article  CAS  Google Scholar 

  • Euzéby J (2011) List of new names and new combinations previously effectively, but not validly, published. Validation List no. 138. Int J Syst Evol Microbiol 61:475–476. https://doi.org/10.1099/ijs.0.032003-0

    Article  Google Scholar 

  • Farris JS (1972) Estimating phylogenetic trees from distance matrices. Am Nat 106(951):645–667

    Article  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376. https://doi.org/10.1007/bf01734359

    Article  CAS  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. https://doi.org/10.1007/bf01731581

    Article  CAS  PubMed  Google Scholar 

  • Kluge AG, Farris JS (1969) Quantitative phyletics and the evolution of Anurans. Syst Zool 18:1–32

    Article  Google Scholar 

  • Lee I, Ouk Kim Y, Park SC, Chun J (2016) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66(2):1100–1103

    Article  CAS  PubMed  Google Scholar 

  • Lefort V, Desper R, Gascuel O (2015) FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 32:2798–2800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Stoeckert CJ, Roos DS (2003) OrthoMCL: identifcation of ortholog groups for eukaryotic genomes. Genome Res 13:2178–2189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu GH, Rao MPN, Dong ZY, Wang JP, Che JM, Chen QQ, Sengonca C, Liu B, Li WJ (2019) Genome-based reclassifcation of Bacillus plakortidis Borchert et al. 2007 and Bacillus lehensis Ghosh et al. 2007 as a later heterotypic synonym of Bacillus oshimensis Yumoto et al. 2005; Bacillus rhizosphaerae Madhaiyan et al. 2011 as a later heterotypic synonym of Bacillus clausii Nielsen et al. 1995. Antonie Van Leeuwenhoek 112:1725–1730. https://doi.org/10.1007/s10482-019-01299-z

    Article  CAS  PubMed  Google Scholar 

  • Luo C, Rodriguez-R LM, Konstantinidis KT (2014) MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Res 42:8. https://doi.org/10.1093/nar/gku169

    Article  CAS  Google Scholar 

  • Meier-Kolthoff JP, Göker M (2019) TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 10(1):2182

    Article  PubMed  PubMed Central  Google Scholar 

  • Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60

    Article  Google Scholar 

  • Orata FD, Meier-Kolthoff JP, Sauvageau D, Stein LY (2018) Phylogenomic analysis of the gammaproteobacterial methanotrophs (Order Methylococcales) calls for the reclassification of members at the genus and species levels. Front Microbiol 9:3162

    Article  PubMed  PubMed Central  Google Scholar 

  • Pikuta E, Lysenko A, Chuvilskaya N, Mendrock U et al (2000) Anoxybacillus pushchinensis gen. nov., sp. nov., a novel anaerobic, alkaliphilic, moderately thermophilic bacterium from manure, and description of Anoxybacillus flavithermus comb. nov. Int J Syst Evol Microbiol 50:2109–2117

    Article  CAS  PubMed  Google Scholar 

  • Pikuta E, Cleland D, Tang J (2003) Aerobic growth of Anoxybacillus pushchinoensis K1T: emended descriptions of A. pushchinoensis and the genus Anoxybacillus. Int J Syst Evol Microbiol 53:1561–1562

    Article  CAS  PubMed  Google Scholar 

  • Price MN, Dehal PS, Arkin AP (2010) FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490

    Article  PubMed  PubMed Central  Google Scholar 

  • Rao MPN, Xiao M, Liu D, Tang R, Liu G, Li W (2022) Genome-based reclassifcation of Evansella polygoni as a later heterotypic synonym of Evansella clarkii and transfer of Bacillus shivajii and Bacillus tamaricis to the genus Evansella as Evansella shivajii comb. Nov. and Evansella tamaricis comb. nov. Arch Microbiol 204:47. https://doi.org/10.1007/s00203-021-02720-w

    Article  CAS  Google Scholar 

  • Richter M, Rossello-Mora M (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 06(45):19126–19131. https://doi.org/10.1073/pnas.0906412106

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  PubMed  Google Scholar 

  • Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specifc gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. https://doi.org/10.1093/nar/22.22.4673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tindall BJ (1990a) A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130

    Article  CAS  Google Scholar 

  • Tindall BJ (1990b) Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202

    Article  CAS  Google Scholar 

  • Tindall BJ, Sikorski J, Smibert RM, Krieg NR (2007) Phenotypic characterization and the principles of comparative systematics. In: Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM, Snyder LR (eds) Methods for general and molecular microbiology, 3rd edn. American Society for Microbiology, Washington, DC, pp 330–393

    Google Scholar 

  • Wattam AR, Davis JJ, Assaf R et al (2017) Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acid Res 45:D535–D542. https://doi.org/10.1093/nar/gkw1017

    Article  CAS  PubMed  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR et al (1987) International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017a) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon SH, Ha SM, Lim J, Kwon S, Chun J (2017b) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110(10):1281–2128. https://doi.org/10.1007/s10482-017-0844-4

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Karadeniz Technical University (KTU BAP FAT-2019-7822).

Funding

This work received no specific grant from any funding agency.

Author information

Authors and Affiliations

Authors

Contributions

KIB designed the study. KIB, HIG and SC performed genome analysis and analysed the data. KIB, HIG and AOB performed the phenotypic and chemotaxonomic analysis. KIB wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kadriye Inan Bektas.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 780 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inan Bektas, K., Guler, H.İ., Canakci, S. et al. Genome-based reclassification of Anoxybacillus salavatliensis Cihan et al. 2011 as a later heterotypic synonym of Anoxybacillus gonensis Belduz et al. 2003. Antonie van Leeuwenhoek 116, 415–423 (2023). https://doi.org/10.1007/s10482-023-01813-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-023-01813-4

Keywords

Navigation