Skip to main content
Log in

Halotolerant Bacteria from Genus Nesterenkonia sandarakina VSA9 as a Potential Polyhydroxyalkanoate Producer

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Nesterenkonia sandarakina VSA9 pigmented bacteria isolated from Sargassum is being reported to produce polyhydroxyalkanoates (PHA) deduced through detecting the presence of pha C gene using the molecular method. The PHA synthase gene was of type I which has been concluded from the phylogenetic tree and multiple sequence analysis. The amino acid analysis of pha C gene confirms the involvement of the lipase box having a sequence of G–Y–C–I–G–G with cysteine as the active center of the PHA synthase. Homology modeling predicted the 3D protein structure which is similar to the PHA synthase of Chromobacterium sp. USM2. The solvent extract of N. sandarakina VSA9 showed the presence of Carotenoid compound with maximum wavelength at 475 nm. The study’s findings could have far-reaching implications, contributing to advancements in the biotechnology, industrial processes, and sustainable practices. The simultaneous production of carotenoids and PHAs by N. sandarakina VSA9 presents exciting opportunities for the development of innovative and environmentally friendly applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of the study are available on request from the corresponding author.

Code Availability

Not applicable.

References

  1. Purohit MK, Raval VH, Singh SP (2014) Haloalkaliphilic bacteria: molecular diversity and biotechnological applications. In: Geomicrobiology and biogeochemistry. Springer, Berlin, pp 61–79

  2. Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4:1–13. https://doi.org/10.1186/1746-1448-4-2

    Article  CAS  Google Scholar 

  3. Rodriguez-Valera F (1991) General and applied aspects of halophilic microorganisms. Plenum Press, New York

    Book  Google Scholar 

  4. Staufenberger T, Thiel V, Wiese J, Imhoff JF (2008) Phylogenetic analysis of bacteria associated with Laminaria saccharina. FEMS Microbiol Ecol 64(1):65–77. https://doi.org/10.1111/j.1574-6941.2008.00445.x

    Article  CAS  PubMed  Google Scholar 

  5. Jard G, Marfaing H, Carrère H, Delgenès JP, Steyer JP, Dumas C (2013) French Brittany macroalgae screening: composition and methane potential for potential alternative sources of energy and products. Bioresour Technol 144:492–498. https://doi.org/10.1016/j.biortech.2013.06.114

    Article  CAS  PubMed  Google Scholar 

  6. Jard G, Jackowiak D, Carrère H, Delgenès JP, Torrijos M, Steyer JP, Dumas C (2012) Batch and semi-continuous anaerobic digestion of Palmaria palmata: comparison with Saccharina latissima and inhibition studies. Chem Eng J 209:513–519. https://doi.org/10.1016/j.cej.2012.08.010

    Article  CAS  Google Scholar 

  7. Lachnit T, Fischer M, Künzel S, Baines JF, Harder T (2013) Compounds associated with algal surfaces mediate epiphytic colonization of the marine macroalga Fucus vesiculosus. FEMS Microbiol Ecol 84(2):411–420. https://doi.org/10.1111/1574-6941.12071

    Article  CAS  PubMed  Google Scholar 

  8. Rehm BH (2003) Polyester synthases: natural catalysts for plastics. Biochem J 376(1):15–33. https://doi.org/10.1042/bj20031254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tan D, Yin J, Chen GQ (2017) Production of polyhydroxyalkanoates. In: Current developments in biotechnology and bioengineering. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-444-63662-1.00029-4

  10. Zhang W, Chen C, Cao R, Maurmann L, Li P (2015) Inhibitors of polyhydroxyalkanoate (PHA) synthases: synthesis, molecular docking, and implications. ChemBioChem 16(1):156–166. https://doi.org/10.1002/cbic.201402380

    Article  CAS  PubMed  Google Scholar 

  11. Yin J, Chen JC, Wu Q, Chen GQ (2015) Halophiles, coming stars for industrial biotechnology. Biotechnol Adv 33(7):1433–1442. https://doi.org/10.1016/j.biotechadv.2014.10.008

    Article  CAS  PubMed  Google Scholar 

  12. Portero LR, Alonso-Reyes DG, Zannier F, Vazquez MP, Farías ME, Gärtner W, Albarracín VH (2019) Photolyases and cryptochromes in UV-resistant bacteria from high-altitude Andean Lakes. Photochem Photobiol 95(1):315–330. https://doi.org/10.1111/php.13061

    Article  CAS  PubMed  Google Scholar 

  13. Kusmita L, Nugraheni SA, Nuryadi H (2019) Characterization of cartenoid pigments from Sargassum polycystum and its associated bacteria. Pak J Biotechnol 16(4):219–226

    Article  CAS  Google Scholar 

  14. Kankonkar HT, Khandeparker RS (2022) Microplastics a novel substratum for polyhydroxyalkanoate (PHA)-producing bacteria in aquatic environments. Curr Microbiol 79(9):258. https://doi.org/10.1007/s00284-022-02929-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sheu DS, Wang YT, Lee CY (2000) Rapid detection of polyhydroxyalkanoate-accumulating bacteria isolated from the environment by colony PCR. Microbiology 146(8):2019–2025

    Article  CAS  PubMed  Google Scholar 

  16. Jain R, Tiwari A. (2014) β-Ketothiolase homologues in Cupriavidus necator. Int J Res (IJR) 1(7)

  17. Muhammed MT, Aki-Yalcin E (2019) Homology modeling in drug discovery: overview, current applications, and future perspectives. Chem Biol Drug Des 93(1):12–20. https://doi.org/10.1111/cbdd.13388

    Article  CAS  PubMed  Google Scholar 

  18. Rodriguez-Amaya DB, Kimura M (2004) Harvest Plus handbook for carotenoid analysis, vol 2. International Food Policy Research Institute (IFPRI), Washington, p 63

  19. Popper ZA, Michel G, Hervé C, Domozych DS, Willats WG, Tuohy MG, Stengel DB (2011) Evolution and diversity of plant cell walls: from algae to flowering plants. Annu Rev Plant Biol 62:567–590. https://doi.org/10.1146/annurev-arplant-042110-103809

    Article  CAS  PubMed  Google Scholar 

  20. Mei X, Wu C, Zhao J, Yan T, Jiang P (2019) Community structure of bacteria associated with drifting Sargassum horneri, the causative species of golden tide in the Yellow Sea. Front Microbiol 10:1192. https://doi.org/10.3389/fmicb.2019.01192

    Article  PubMed  PubMed Central  Google Scholar 

  21. Park C, Choi K, Soh E, Koh H (2016) Study on the future development direction of plant variety protection system in Korea. Korean J Breed Sci 48(1):11–21

    Article  Google Scholar 

  22. Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19(1):1–30. https://doi.org/10.1080/07352680091139169

    Article  Google Scholar 

  23. Longford SR, Tujula NA, Crocetti GR, Holmes AJ, Holmström C, Kjelleberg S, Taylor MW (2007) Comparisons of diversity of bacterial communities associated with three sessile marine eukaryotes. Aquat Microb Ecol 48(3):217–229. https://doi.org/10.3354/ame048217

    Article  Google Scholar 

  24. Michelou VK, Caporaso JG, Knight R, Palumbi SR (2013) The ecology of microbial communities associated with Macrocystis pyrifera. PLoS ONE 8(6):e67480. https://doi.org/10.1371/journal.pone.0067480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li WJ, Chen H, Kim CJ, Zhang YQ, Park DJ, Lee JC, Jiang CL (2005) Nesterenkonia sandarakina sp. nov. and Nesterenkonia lutea sp. Nov., novel actinobacteria, and emended description of the genus Nesterenkonia. Int J Syst Evol Microbiol 55(1):463–466. https://doi.org/10.1099/ijs.0.63281-0

    Article  CAS  PubMed  Google Scholar 

  26. Quillaguamán J, Guzman H, Van-Thuoc D, Hatti-Kaul R (2010) Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and prospects. Appl Microbiol Biotechnol 85:1687–1696. https://doi.org/10.1007/s00253-009-2397-6

    Article  CAS  PubMed  Google Scholar 

  27. Chek MF, Kim SY, Mori T, Arsad H, Samian MR, Sudesh K, Hakoshima T (2017) Structure of polyhydroxyalkanoate (PHA) synthase PhaC from Chromobacterium sp. USM2, producing biodegradable plastics. Sci Rep 7(1):5312. https://doi.org/10.1038/s41598-017-05509-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guzmán D, Balderrama-Subieta A, Cardona-Ortuño C, Guevara-Martínez M, Callisaya-Quispe N, Quillaguamán J (2012) Evolutionary patterns of carbohydrate transport and metabolism in Halomonas boliviensis as derived from its genome sequence: influences on polyester production. Aquat Biosyst 8(1):1–12. https://doi.org/10.1186/2046-9063-8-9

    Article  CAS  Google Scholar 

  29. Koseki Y, Aoki S (2014) Computational medicinal chemistry for rational drug design: identification of novel chemical structures with potential anti-tuberculosis activity. Curr Top Med Chem 14(1):176–188

    Article  CAS  PubMed  Google Scholar 

  30. Malik K, Tokkas J, Goyal S (2012) Microbial pigments: a review. Int J Microbial Res Technol 1(4):361–365

    Google Scholar 

  31. Reichenbach H, Kohl W, Böttger-Vetter A, Achenbach H (1980) Flexirubin-type pigments in Flavobacterium. Arch Microbiol 126:291–293. https://doi.org/10.1007/BF00409934

    Article  CAS  Google Scholar 

  32. Wycisk R, Pintauro PN, Wang W, O’Connor S (1996) Polyphosphazene membranes. I. Solid-state photocrosslinking of poly [(4-ethylphenoxy)-(phenoxy) phosphazene]. J Appl Polym Sci 59(10):1607–1617. https://doi.org/10.1002/(SICI)1097-4628(19960307)59:10<1607::AID-APP13>3.0.CO;2-T

Download references

Acknowledgements

The authors are thankful to Director, HOD of Biological Oceanography Division for providing Laboratory facilities. The authors would like to thank Dr. Supriya Tilvi and Miss Shambhavi Naik for providing UV–visible spectrophotometer facility. This is NIO Contribution No. 7159.

Funding

Department of Biotechnology, Govt. of India, New Delhi for providing fellowship. CSIR-National Institute of Oceanography for financial support from OLP 2005 project.

Author information

Authors and Affiliations

Authors

Contributions

HK conceived the study. RK guided the experiments which were carried out. HK searched database for articles and wrote the manuscript. RK critically analyzed the data and revised the manuscript. The authors read and approved the Manuscript.

Corresponding author

Correspondence to Rakhee S. Khandeparker.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 52 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kankonkar, H.T., Khandeparker, R.S. Halotolerant Bacteria from Genus Nesterenkonia sandarakina VSA9 as a Potential Polyhydroxyalkanoate Producer. Curr Microbiol 81, 53 (2024). https://doi.org/10.1007/s00284-023-03569-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03569-6

Navigation