Skip to main content
Log in

Ochrobactrum chromiisoli sp. nov., Isolated from Chromium-Contaminated Soil

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A Gram-stain-negative, non-spore-forming, flagellated, motile, aerobic, rod-shaped bacteria strain, designated YY2XT, was isolated from chromium-contaminated soil. Phylogenetic analysis based on 16S rRNA gene, recA gene, and whole genome indicated that the strain represented a new member of the genus Ochrobactrum, family Brucellaceae, class Alphaproteobacteria. The phylogenetic trees based on 16 s rRNA gene, revealed that Falsochrobactrum ovis DSM26720T (96.7%), Ochrobactrum gallinifaecis DSM15295T (96.2%), and Pseudochrobactrum asaccharolyticum DSM25619T (96.2%) are the most closely related phylogenetic neighbors of strain YY2XT. The draft genome of YY2XT was approximately 4,650,646 bp in size with a G + C content of 53.0 mol%. Average nucleotide identity and digital DNA–DNA hybridization values among strain YY2XT and the selected Brucellaceae species were 71.4–83.1% and 13.5–42.7%, which are below the recommended cut-off values for species delineation. Growth of strain YY2XT occurred within pH 5–10 (optimum, pH 7–8), 4 ℃–42 °C (optimum, 30 °C), and NaCl concentrations of 0.0–6.0% (optimum, 1.0%). Major quinone system was ubiquinone 10, the major fatty acids were C16:0, C18:1ω7c, and C16:1ω7c and the major polyamines were spermidine and putrescine. Major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylmonomethylethanolamine, phosphatidylethanolamine, and four undefined lipids. On the basis of the phenotypic, genotypic and chemotaxonomic traits, strain YY2XT was considered to represent a novel species of the genus Ochrobactrum, for which the name Ochrobactrum chromiisoli sp. nov. is proposed. The type strain is YY2XT (= CCTCC AB 2023035T = JCM 36000T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Meyer KE, Shaw EB (1920) A comparison of the morphologic cultural and biochemical characteristics of B. abortus and B. melitensis: studies on the genus Brucella nov. Gen I J Infect Dis 27:173–184. https://doi.org/10.1093/infdis/27.3.173

    Article  Google Scholar 

  2. Holmes B, Popoff M, Kiredjian M, Kersters K (1988) Ochrobactrum anthropi gen. nov., sp. nov. from human clinical specimens and previously known as Group Vd. Int J Syst Evol Microbiol 38(4):406–416. https://doi.org/10.1099/00207713-38-4-406

    Article  Google Scholar 

  3. Hördt et al. [05] emerge Ochrobactrum into Brucella,rdt A, Lopez MG, Meier-Kolthoff JP, Schleuning M, Weinhold LM et al (2020) Analysis of 1,000+ type-strain genomes substantially improves taxonomic classification of Alphaproteobacteria. Front Microbiol 11:468. https://doi.org/10.3389/fmicb.2020.00468

  4. Foster G, Osterman BS, Godfroid J, Jacques I, Cloeckaert A (2007) Brucella ceti sp. nov. and Brucella pinnipedialis sp. nov., for Brucella strains with cetaceans and seals as their preferred hosts. Int J Syst Evol Microbiol 57:2688–2693. https://doi.org/10.1099/ijs.0.65269-0

    Article  CAS  PubMed  Google Scholar 

  5. Kampfer P, Buczolits S, Albrecht A, Busse HJ, Stackebrandt E (2003) Towards a standardized format for the description of a novel species (of an established genus): Ochrobactrum gallinifaecis sp. nov. Int J Syst Evol Microbiol 53:893–896. https://doi.org/10.1099/ijs.0.02710-0

    Article  CAS  PubMed  Google Scholar 

  6. Kampfer P, Huber B, Busse HJ, Scholz HC, Tomaso H et al (2011) Ochrobactrum pecoris sp. nov., isolated from farm animals. Int J Syst Evol Microbiol 61:2278–2283. https://doi.org/10.1099/ijs.0.027631-0

    Article  CAS  PubMed  Google Scholar 

  7. Scholz HC, Hubalek Z, Sedlacek I, Vergnaud G, Tomaso H et al (2008) Brucella microti sp. nov., isolated from the common vole Microtus arvalis. Int J Syst Evol Microbiol 58:375–382. https://doi.org/10.1099/ijs.0.65356-0

    Article  CAS  PubMed  Google Scholar 

  8. Scholz HC, Revilla-Fernandez S, Al Dahouk S, Hammerl JA, Zygmunt MS et al (2016) Brucella vulpis sp. nov., isolated from mandibular lymph nodes of red foxes (Vulpes vulpes). Int J Syst Evol Microbiol 66(5):2090–2098. https://doi.org/10.1099/ijsem.0.000998

    Article  CAS  PubMed  Google Scholar 

  9. Whatmore AM, Davison N, Cloeckaert A, Al Dahouk S, Zygmunt MS et al (2014) Brucella papionis sp. nov., isolated from baboons (Papio spp.). Int J Syst Evol Microbiol 64:4120–4128. https://doi.org/10.1099/ijs.0.065482-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Imran A, Hafeez FY, Fruhling A, Schumann P, Malik KA et al (2010) Ochrobactrum ciceri sp. nov., isolated from nodules of Cicer arietinum. Int J Syst Evol Microbiol 60:1548–1553. https://doi.org/10.1099/ijs.0.013987-0

    Article  CAS  PubMed  Google Scholar 

  11. Zurdo-Pineiro JL, Rivas R, Trujillo ME, Vizcaino N, Carrasco JA et al (2007) Ochrobactrum cytisi sp. nov., isolated from nodules of Cytisus scoparius in Spain. Int J Syst Evol Microbiol 57:784–788. https://doi.org/10.1099/ijs.0.64613-0

    Article  CAS  PubMed  Google Scholar 

  12. Li L, Li YQ, Jiang Z, Gao R, Nimaichand S et al (2016) Ochrobactrum endophyticum sp. nov., isolated from roots of Glycyrrhiza uralensis. Arch Microbiol 198(2):171–179. https://doi.org/10.1007/s00203-015-1170-8

    Article  CAS  PubMed  Google Scholar 

  13. Lebuhn M, Achouak W, Schloter M, Berge O, Meier H et al (2000) Taxonomic characterization of Ochrobactrum sp. isolates from soil samples and wheat roots, and description of Ochrobactrum tritici sp. nov., and Ochrobactrum grignonense sp. nov. Int J Syst Evol Microbiol 50:2207–2223. https://doi.org/10.1099/00207713-50-6-2207

    Article  CAS  PubMed  Google Scholar 

  14. Sultan S, Hasnain S (2007) Reduction of toxic hexavalent chromium by Ochrobactrum intermedium strain SDCr-5 stimulated by heavy metals. Bioresource Technol 98(2):340–344. https://doi.org/10.1016/j.biortech.2005.12.025

    Article  CAS  Google Scholar 

  15. Trujillo ME, Willems A, Abril A, Planchuelo AM, Rivas R et al (2005) Nodulation of Lupinus albus by strains of Ochrobactrum lupini sp. nov. Appl Environ Microb 71(3):1318–1327. https://doi.org/10.1128/AEM.71.3.1318-1327.2005

    Article  CAS  Google Scholar 

  16. Tripathi AK, Verma SC, Chowdhury SP, Lebuhn M, Gattinger A et al (2006) Ochrobactrum oryzae sp. nov., an endophytic bacterial species isolated from deep-water rice in India. Int J Syst Evol Microbiol 56:1677–1680. https://doi.org/10.1099/ijs.0.63934-0

    Article  CAS  PubMed  Google Scholar 

  17. Kampfer P, Sessitsch A, Schloter M, Huber B, Busse HJ et al (2008) Ochrobactrum rhizosphaerae sp. nov. and Ochrobactrum thiophenivorans sp. nov., isolated from the environment. Int J Syst Evol Microbiol 58:1426–1431. https://doi.org/10.1099/ijs.0.65407-0

    Article  CAS  PubMed  Google Scholar 

  18. Kampfer P, Scholz HC, Huber B, Falsen E, Busse HJ (2007) Ochrobactrum haematophilum sp. nov. and Ochrobactrum pseudogrignonense sp. nov., isolated from human clinical specimens. Int J Syst Evol Microbiol 57:2513–2518. https://doi.org/10.1099/ijs.0.65066-0

    Article  CAS  PubMed  Google Scholar 

  19. Scholz HC, Nockler K, Gollner C, Bahn P, Vergnaud G et al (2010) Brucella inopinata sp. nov., isolated from a breast implant infection. Int J Syst Evol Microbiol 60:801–808. https://doi.org/10.1099/ijs.0.011148-0

    Article  CAS  PubMed  Google Scholar 

  20. Velasco J, Romero C, Lopez-Goni I, Leiva J, Diaz R et al (1998) Evaluation of the relatedness of Brucella spp. and Ochrobactrum anthropi and description of Ochrobactrum intermedium sp. nov., a new species with a closer relationship to Brucella spp. Int J Syst Bacteriol 48:759–768. https://doi.org/10.1099/00207713-48-3-759

    Article  CAS  PubMed  Google Scholar 

  21. Teyssier C, Marchandin H, Jean-Pierre H, Masnou A, Dusart G et al (2007) Ochrobactrum pseudintermedium sp. nov., a novel member of the family Brucellaceae, isolated from human clinical samples. Int J Syst Evol Microbiol 57:1007–1013. https://doi.org/10.1099/ijs.0.64416-0

    Article  CAS  PubMed  Google Scholar 

  22. Woo SG, Ten LN, Park J, Lee M (2011) Ochrobactrum daejeonense sp. nov., a nitrate-reducing bacterium isolated from sludge of a leachate treatment plant. Int J Syst Evol Microbiol 61:2690–2696. https://doi.org/10.1099/ijs.0.025510-0

    Article  CAS  PubMed  Google Scholar 

  23. Huber B, Scholz HC, Kampfer P, Falsen E, Langer S et al (2010) Ochrobactrum pituitosum sp. nov., isolated from an industrial environment. Int J Syst Evol Microbiol 60:321–326. https://doi.org/10.1099/ijs.0.011668-0

    Article  CAS  PubMed  Google Scholar 

  24. Hu MY, Li XG, Li ZJ, Liu B, Yang ZG et al (2020) Ochrobactrum teleogrylli sp. nov., a pesticide-degrading bacterium isolated from the insect Teleogryllus occipitalis living in deserted cropland. Int J Syst Evol Microbiol. 70(4):2217–2225. https://doi.org/10.1099/ijsem.0.003964

    Article  CAS  PubMed  Google Scholar 

  25. Li XG, Sen KY, Zhang YQ, Tian YQ, Shi B (2022) Spatiotemporal dynamics of the microbial diversity on salt-preserved goatskins assessed by culturing and 16S rRNA gene amplicon sequencing. J Leather Sci Eng. https://doi.org/10.1186/s42825-022-00107-1

    Article  Google Scholar 

  26. Kavita B, Keharia H (2012) Reduction of hexavalent chromium by Ochrobactrum intermedium BCR400 isolated from a chromium-contaminated soil. 3 Biotech 2(1):79–87. https://doi.org/10.1007/s13205-011-0038-0

    Article  CAS  PubMed  Google Scholar 

  27. Xu Z, Li XG, Tian JW, Gan LZ, Tian YQ (2021) Leucobacter chromiisoli sp. nov., isolated from chromium-containing chemical plant soil. Int J Syst Evol Microbiol 71:004923. https://doi.org/10.1099/ijsem.0.004923

    Article  CAS  Google Scholar 

  28. Narayani M, Shetty KV (2014) Reduction of hexavalent chromium by a novel Ochrobactrum sp - microbial characteristics and reduction kinetics. J Basic Microb 54(4):296–305. https://doi.org/10.1002/jobm.201200183

    Article  CAS  Google Scholar 

  29. Chun JS, Goodfellow M (1995) A phylogenetic analysis of the genus Nocardia with 16S ribosomal-RNA gene-sequences. Int J Syst Bacteriol 45(2):240–245. https://doi.org/10.1099/00207713-45-2-240

    Article  CAS  PubMed  Google Scholar 

  30. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67(5):1613–1617. https://doi.org/10.1099/ijsem.0.001755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17(6):368–376. https://doi.org/10.1007/BF01734359

    Article  CAS  PubMed  Google Scholar 

  32. Saitou N, Nei M (1987) The neighbor-joining method a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  PubMed  Google Scholar 

  33. Rzhetsky A, Nei M (1992) A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 9(5):945–967. https://doi.org/10.1093/oxfordjournals.molbev.a040771

    Article  CAS  Google Scholar 

  34. Komura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotides-sequences. J Mol Evol 16(2):111–120. https://doi.org/10.1007/BF01731581

    Article  Google Scholar 

  35. Kim D, Park S, Chun J (2021) Introducing EzAAI: a pipeline for high throughput calculations of prokaryotic average amino acid identity. J Microbiol 59(5):476–480. https://doi.org/10.1007/s12275-021-1154-0

    Article  CAS  PubMed  Google Scholar 

  36. Chen CJ, Chen H, Zhang Y, Thomas HR, Frank MH et al (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13(8):1194–1202. https://doi.org/10.1016/j.molp.2020.06.009

    Article  CAS  PubMed  Google Scholar 

  37. Na SI, Kim YO, Yoon SH, Ha SM, Baek I et al (2018) UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 56(4):280–285. https://doi.org/10.1007/s12275-018-8014-6

    Article  CAS  PubMed  Google Scholar 

  38. Wang Y, Coleman-Derr D, Chen GP, Gu YQ (2015) OrthoVenn: a web server for genome wide comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 43(W1):W78–W84. https://doi.org/10.1093/nar/gkv487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Manual of methods for general and molecular bacteriology. American Society for Microbiology, Washington, pp 607–654

    Google Scholar 

  40. Cappuccino JG, Sherman N (2008) Microbiology: a laboratory manual. Pearson/Benjamin Cummings, San Francisco

    Google Scholar 

  41. Barrow GI, Feltham RKA (2004) Cowan and steel’s manual for the identification of medical bacteria. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511527104

    Book  Google Scholar 

  42. Hiraishi A, Ueda Y, Ishihara J, Mori T (1996) Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42(6):457–469. https://doi.org/10.2323/jgam.42.457

    Article  CAS  Google Scholar 

  43. Kates M (1972) Techniques of lipidology: isolation, analysis and identification of lipids. In: Work TS, Work E (eds) Laboratory techniques in biochemistry and molecular biology, 3. Elsevier, Amsterdam, pp 269–610

    Google Scholar 

  44. Raj PS, Ramaprasad EVV, Vaseef S, Sasikala C, Ramana CV (2013) Rhodobacter viridis sp. nov., a phototrophic bacterium isolated from mud of a stream. Int J Syst Evol Microbiol 63:181–186. https://doi.org/10.1099/ijs.0.038471-0

    Article  CAS  PubMed  Google Scholar 

  45. Athalye M, Noble WC, Minnikin DE (1985) Analysis of cellular fatty-acids by gas-chromatography as a tool in the identification of medically important coryneform bacteria. J Appl Bacteriol 58(5):507–512. https://doi.org/10.1111/j.1365-2672.1985.tb01491.x

    Article  CAS  PubMed  Google Scholar 

  46. Xiang WS, Liu CX, Wang XJ, Du J, Xi LJ et al (2011) Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 61:1165–1169. https://doi.org/10.1099/ijs.0.023283-0

    Article  CAS  PubMed  Google Scholar 

  47. Scherer P, Kneifel H (1983) Distribution of polyamines in methanogenic bacteria. J Bacteriol 154(3):1315–1322. https://doi.org/10.1128/JB.154.3.1315-1322.1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kampfer P, Glaeser S, Busse HJ, Eisenberg T, Scholz H (2013) Falsochrobactrum ovis gen. nov., sp. nov., isolated from a sheep. Int J Syst Evol Microbiol 63(10):3841–3847. https://doi.org/10.1099/ijs.0.049627-0

    Article  CAS  PubMed  Google Scholar 

  49. Sun LN, Yao L, Gao XH, Huang KH, Bai NL et al (2019) Falsochrobactrum shanghaiense sp. nov., isolated from paddy soil and emended description of the genus Falsochrobactrum. Int J Syst Evol Microbiol 69(3):778–782. https://doi.org/10.1099/ijsem.0.003236

    Article  CAS  PubMed  Google Scholar 

  50. Kampfer P, Rossello-Mora R, Scholz HC, Welinder-OlssonC Falsen E (2006) Description of Pseudochrobactrum gen. nov., with the two species Pseudochrobactrum asaccharolyticum sp. nov. and Pseudochrobactrum saccharolyticum sp. nov. Int J Syst Evol Microbiol 56(8):1823–1829. https://doi.org/10.1099/ijs.0.64256-0

    Article  CAS  PubMed  Google Scholar 

  51. Kampfer P, Scholz H, Huber B, Thummes K, Busse HJ et al (2007) Description of Pseudochrobactrum kiredjianiae sp. nov. Int J Syst Evol Microbiol 57(4):755–760. https://doi.org/10.1099/ijs.0.64714-0

    Article  CAS  PubMed  Google Scholar 

  52. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68(1):461–466. https://doi.org/10.1099/ijsem.0.002516

    Article  CAS  PubMed  Google Scholar 

  53. Moreno E, Blasco JM, Letesson JJ, Gorvel JP, Moriyon I (2022) Pathogenicity and its implications in taxonomy: the Brucella and Ochrobactrum case. PATHOGENS. https://doi.org/10.3390/pathogens11030377

    Article  PubMed  PubMed Central  Google Scholar 

  54. Moreno E, Middlebrook EA, Altamirano-Silva P, Al Dahouk S, Araj GF et al (2023) If you’re not confused, you’re not paying attention: Ochrobactrum is not Brucella. J Clin Microbiol 61(8):e0043823. https://doi.org/10.1128/jcm.00438-23

    Article  PubMed  Google Scholar 

  55. Holze K, Hoelzle LE, Wareth G (2023) Genetic comparison of Brucella spp. and Ochrobactrum spp. erroneously included into the genus Brucella confirms separate genera. Ger J Vet Res 3(1):31–37. https://doi.org/10.51585/gjvr.2023.1.0050

    Article  Google Scholar 

  56. Leclercq SO, Cloeckaert A, Zygmunt MS (2020) Taxonomic organization of the family Brucellaceae based on a phylogenomic approach. Front Microbiol. https://doi.org/10.3389/fmicb.2019.03083

    Article  PubMed  PubMed Central  Google Scholar 

  57. Suarez-Esquivel M, Chaves-Olarte E, MorenoE Guzman-Verri C (2020) Brucella genomics: macro and micro evolution. Int J Mol Sci. https://doi.org/10.3390/ijms21207749

    Article  PubMed  PubMed Central  Google Scholar 

  58. Sutcliffe IC, Trujillo ME, Goodfellow M (2012) A call to arms for systematists: revitalising the purpose and practises underpinning the description of novel microbial taxa. Anton Leeuw Int J G 10(1):13–20. https://doi.org/10.1007/s10482-011-9664-0

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Bernhard Schink (Fachbereich Biologie, Universitaet Konstanz) for his kindly help in the scientific naming of strain YY2XT. We are grateful to Yajun Lv (CCTCC), Luan Yan (CCTCC), Liu Jia (CCTCC), Yasuo Amano (JCM) and Takao Iino (JCM)) for conservation YY2XT.

Funding

This study was financially supported by the Major Scientific and Technological Achievements Transformation Project of Sichuan Province (Grant No. 2022ZHCG0128), Science and technology project of Sichuan Dazhou (2021CDDZ-19) and the Enzyme Resources Sharing and Service Platform of Sichuan Province (Grant No. 2021JDS0020).

Author information

Authors and Affiliations

Authors

Contributions

YY isolated strain, completed trials and wrote the main manuscript. ZX, LY and MYH provided methodological guidance. YQT, GYJ and ZX revised the manuscript. JC and YCY were involved in charting. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Yongqiang Tian.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest in this study.

Ethical Approval

The authors declare that there are no ethical issues in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 11438 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Xu, Z., Yang, L. et al. Ochrobactrum chromiisoli sp. nov., Isolated from Chromium-Contaminated Soil. Curr Microbiol 81, 50 (2024). https://doi.org/10.1007/s00284-023-03562-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03562-z

Navigation