Skip to main content
Log in

Predicting Human Risk with Multidrug Resistant Enterobacter hormaechei MS2 having MCR 9 Gene Isolated from the Feces of Healthy Broiler Through Whole-Genome Sequence-Based Analysis

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The zoonotic spread of antimicrobial resistance (AMR) and the associated infections are becoming a major threat to the human population worldwide. Strategies to identify the potential pathogen dissemination by seemingly healthy livestock are at a nascent stage and it is of significant importance to monitor environmental evolution of AMR. In this study, a multidrug resistant strain (MDR) of Enterobacter hormaechei MS2 isolated from the feces of healthy broiler chicken has been characterized by whole-genome sequencing-based method. Here, the isolate was primarily subjected to antimicrobial susceptibility testing followed genome sequencing and analysis. From the antimicrobial susceptibility testing result, the strain was found to be resistant to multiple classes of drugs including the colistin which is an important  last resort drug used to treat infectious diseases. The resistome prediction of genomic data further revealed the presence of 7 perfect and 26 strict hits including those for MCR-9 and FosA2. The pathogenicity prediction has also demonstrated the strain to have the potential to be a human pathogen with 0.72 probability. The phylogenetic analysis has also supported the zoonotic potential of the strain due to its clustering with isolates from both human and livestock-associated host groups. The results of the study suggest the need for a strong surveillance system to identify the opportunistic zoonotic pathogens to prevent a silent AMR menace mediated by them. Carriage of multi-drug resistant strains in the livestock gut microbiome is also a serious concern as it has high AMR transmissibility through contact and supply chain activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Ma F, Xu S, Tang Z, Li Z, Zhang L (2021) Use of antimicrobials in food animals and impact of transmission of antimicrobial resistance on humans. Biosaf Health 3:32–38. https://doi.org/10.1016/j.bsheal.2020.09.004

    Article  Google Scholar 

  2. Mehdi Y, Létourneau-Montminy MP, Gaucher ML, Chorfi Y, Suresh G, Rouissi T et al (2018) Use of antibiotics in broiler production: Global impacts and alternatives. Anim Nutrit 4:170–178. https://doi.org/10.1016/j.aninu.2018.03.002

    Article  Google Scholar 

  3. Shariatmadari F (2012) Plans of feeding broiler chickens. Worlds Poult Sci J 68:21–30. https://doi.org/10.1017/S0043933912000037

    Article  Google Scholar 

  4. Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR (2019) Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Front Microbiol 10:1. https://doi.org/10.3389/fmicb.2019.00539

    Article  Google Scholar 

  5. Salinas L, Cárdenas P, Johnson TJ, Vasco K, Graham J, Trueba G (2019) Diverse commensal escherichia coli clones and plasmids disseminate antimicrobial resistance genes in domestic animals and children in a semirural community in Ecuador. MSphere 4:1. https://doi.org/10.1128/MSPHERE.00316-19

    Article  Google Scholar 

  6. Wasteson Y, Skjerve E, Grønvold AM, Grahek-Ogden D, Eckner KF, Kapperud G, Yazdankhah SP (2015) Assessment of the transfer of antimicrobial resistance between pets and humans in Norway. Opinion of the Panel on biological hazards of the Norwegian Scientific Committee for Food Safety. VKM Report

  7. Yeh TK, Lin HJ, Liu PY, Wang JH, Hsueh PR (2022) Antibiotic resistance in Enterobacter hormaechei. Int J Antimicrob Agents 60:106650. https://doi.org/10.1016/j.ijantimicag.2022.106650

    Article  CAS  PubMed  Google Scholar 

  8. Sreejith S, Shajahan S, Prathiush PR, Anjana VM, Viswanathan A, Chandran V et al (2020) Healthy broilers disseminate antibiotic resistance in response to tetracycline input in feed concentrates. Microb Pathog 149:104562. https://doi.org/10.1016/j.micpath.2020.104562

    Article  CAS  PubMed  Google Scholar 

  9. M100 Performance Standards for Antimicrobial Susceptibility Testing A CLSI supplement for global application. 28th Edition

  10. Ligozzi M, Bernini C, Bonora MG, de Fatima M, Zuliani J, Fontana R (2002) Evaluation of the VITEK 2 system for identification and antimicrobial susceptibility testing of medically relevant gram-positive cocci. J Clin Microbiol 40:1681–1686. https://doi.org/10.1128/JCM.40.5.1681-1686.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Patel RK, Jain M (2012) NGS QC toolkit: a toolkit for quality control of next generation sequencing data. PLoS ONE 7:e30619. https://doi.org/10.1371/journal.pone.0030619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bosi E, Donati B, Galardini M, Brunetti S, Sagot MF, Lió P et al (2015) MeDuSa: a multi-draft based scaffolder. Bioinformatics 31:2443–2451. https://doi.org/10.1093/bioinformatics/btv171

    Article  CAS  PubMed  Google Scholar 

  14. Aziz RK, Bartels D, Best A, DeJongh M, Disz T, Edwards RA et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genom 9:1. https://doi.org/10.1186/1471-2164-9-75

    Article  CAS  Google Scholar 

  15. Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A et al (2020) CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucl Acids Res 48:D517–D525. https://doi.org/10.1093/nar/gkz935

    Article  CAS  PubMed  Google Scholar 

  16. Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y et al (2016) PHASTER: a better, faster version of the PHAST phage search tool. Nucl Acids Res 44:W16-21. https://doi.org/10.1093/nar/gkw387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Johansson MHK, Bortolaia V, Tansirichaiya S, Aarestrup FM, Roberts AP, Petersen TN (2021) Detection of mobile genetic elements associated with antibiotic resistance in Salmonella enterica using a newly developed web tool: MobileElementFinder. J Antimicrob Chemother 76:101–109. https://doi.org/10.1093/JAC/DKAA390

    Article  CAS  PubMed  Google Scholar 

  18. Cosentino S, Voldby Larsen M, Møller Aarestrup F, Lund O (2013) PathogenFinder—distinguishing friend from foe using bacterial whole genome sequence data. PLoS ONE 8:1. https://doi.org/10.1371/journal.pone.0077302

    Article  CAS  Google Scholar 

  19. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, Van Wezel GP, Medema MH, Weber T (2021) antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucl Acids Res 49(W1):W29–W35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Treangen TJ, Ondov BD, Koren S, Phillippy AM (2014) The harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol 15:1. https://doi.org/10.1186/s13059-014-0524-x

    Article  CAS  Google Scholar 

  21. Tang B, Elbediwi M, Nambiar RB, Yang H, Lin J, Yue M (2022) Genomic characterization of antimicrobial-resistant salmonella enterica in duck, chicken, and pig farms and retail markets in Eastern China. Microbiol Spectr 10:1. https://doi.org/10.1128/SPECTRUM.01257-22

    Article  Google Scholar 

  22. Zong Z, Feng Y, McNally A (2021) Carbapenem and colistin resistance in enterobacter: determinants and clones. Trends Microbiol 29:473–476. https://doi.org/10.1016/j.tim.2020.12.009

    Article  CAS  PubMed  Google Scholar 

  23. Macesic N, Blakeway LV, Stewart JD, Hawkey J, Wyres KL, Judd LM, et al. (2021) Silent spread of mobile colistin resistance gene mcr-91 on IncHI2 ‘superplasmids’ in clinical carbapenem-resistant Enterobacterales. Clin Microbiol Infect 27:1856.e7–1856.e13. https://doi.org/10.1016/J.CMI.2021.04.020.

  24. Colavecchio A, Cadieux B, Lo A, Goodridge LD (2017) Bacteriophages contribute to the spread of antibiotic resistance genes among foodborne pathogens of the Enterobacteriaceae family—a review. Front Microbiol 8:1108. https://doi.org/10.3389/fmicb.2017.01108

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bachman MA, Lenio S, Schmidt L, Oyler JE, Weiser JN, Hultgren S (2012) Interaction of lipocalin 2, transferrin, and siderophores determines the replicative niche of Klebsiella pneumoniae during pneumonia. Am Soc Microbiol 3:1. https://doi.org/10.1128/mBio.00224-11

    Article  CAS  Google Scholar 

  26. Nandi SP, Sultana M, Hossain MA (2013) Prevalence and characterization of multidrug-resistant Zoonotic Enterobacter spp. in Poultry of Bangladesh. Foodborne Pathogens Dis 10:420–427. https://doi.org/10.1089/FPD.2012.1388

    Article  CAS  Google Scholar 

  27. Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, Jin Q (2005) VFDB: a reference database for bacterial virulence factors. Nucl Acids Res 33(1):D325–D328

    CAS  PubMed  Google Scholar 

  28. Maguvu TE, Bezuidenhout CC (2021) Whole genome sequencing based taxonomic classification, and comparative genomic analysis of potentially human pathogenic enterobacter spp. Isolated from chlorinated wastewater in the North West Province, South Africa. Microorganisms 9:1928. https://doi.org/10.3390/MICROORGANISMS9091928/S1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Machimbirike VI, Uthaipaisanwong P, Khunrae P, Dong HT, Senapin S, Rattanarojpong T, Sutheeworapong S (2021) Comparative genomics of Edwardsiella ictaluri revealed four distinct host-specific genotypes and thirteen potential vaccine candidates. Genomics 113(4):1976–1987

    Article  CAS  PubMed  Google Scholar 

  30. Zhou W, Spoto M, Hardy R, Guan C, Fleming E, Larson PJ, Oh J (2020) Host-specific evolutionary and transmission dynamics shape the functional diversification of Staphylococcus epidermidis in human skin. Cell 180(3):454–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Baseggio L, Rudenko O, Engelstädter J, Barnes AC (2022) The evolution of a specialized, highly virulent fish pathogen through gene loss and acquisition of host-specific survival mechanisms. Appl Environ Microbiol 88(14):1. https://doi.org/10.1128/aem.00222-22

    Article  CAS  Google Scholar 

  32. Annavajhala MK, Gomez-Simmonds A, Uhlemann AC (2019) Multidrug-resistant Enterobacter cloacae complex emerging as a global, diversifying threat. Front Microbiol 10:1. https://doi.org/10.3389/FMICB.2019.00044/FULL

    Article  Google Scholar 

Download references

Acknowledgements

Acknowledging the funding provided by The Department of Animal Husbandry, Government of Kerala, and the support form Kerala Antimicrobial Resistance Strategic Action Plan (KARSAP). Acknowledging the instrumentation facility provided by The Kerala State Council for Science, Technology and Environment (KSCSTE) SRS project.

Funding

The Department of Animal Husbandry, Government of Kerala.

Author information

Authors and Affiliations

Authors

Contributions

SS: conceptualization, data analysis, writing; MP: Data analysis, writing; PRP: review and editing, CCN: data analysis, NP: review and editing; SSA: review and editing, JM: supervision and editing; EKRR: conceptualization, supervision and editing.

Corresponding author

Correspondence to E. K. Radhakrishnan.

Ethics declarations

Conflict of interest

This is to declare that the authors have no conflict of interest on this research work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreekumaran, S., Premnath, M., Prathyush, P.R. et al. Predicting Human Risk with Multidrug Resistant Enterobacter hormaechei MS2 having MCR 9 Gene Isolated from the Feces of Healthy Broiler Through Whole-Genome Sequence-Based Analysis. Curr Microbiol 81, 8 (2024). https://doi.org/10.1007/s00284-023-03492-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03492-w

Navigation