Skip to main content
Log in

Genome-wide genetic marker analysis and genotyping of Escherichia fergusonii strain OTSVEF-60

  • Veterinary Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Poultry originated Escherichia fergusonii (POEF), an emerging bacterial pathogen, causes a wide range of intestinal and extra-intestinal infections in the poultry industry which incurred significant economic losses worldwide. Chromosomal co-existence of antibiotics and metal resistance genes has recently been the focal point of POEF isolates besides its pathogenic potentials. This study reports the complete genome analysis of POEF strain OTSVEF-60 from the poultry originated samples of Bangladesh. The assembled draft genome of the strain was 4.2 Mbp containing 4503 coding sequences, 120 RNA (rRNA = 34, tRNA = 79, ncRNA = 7), and three intact phage signature regions. Forty-one broad range antibiotic resistance genes (ARGs) including dfrA12, qnrS1, blaTEM-1, aadA2, tet(A), and sul-2 along with multiple efflux pump genes were detected, which translated to phenotypic resistant patterns of the pathogen to trimethoprim, fluoroquinolones, β-lactams, aminoglycoside, tetracycline, and sulfonamides. Moreover, 22 metal resistance genes were found co-existing within the genome of the POEF strain, and numerous virulence genes (VGs) coding for cit (AB), feo (AB), fep (ABCG), csg (ABCDEFG), fliC, ompA, gadA, ecpD, etc. were also identified throughout the genome. In addition, we detected a class I integron gene cassette harboring dfrA12, ant (3″)-I, and qacEΔ-sul2 genes; 42 copies of insertion sequence (IS) elements; and two CRISPR arrays. The genomic functional analysis predicted several metabolic pathways related to motility, flagellar assembly, epithelial cell invasion, quorum sensing, biofilm formation, and biosynthesis of vitamin, co-factors, and secondary metabolites. We herein for the first time detected multiple ARGs, VGs, mobile genetic elements, and some metabolic functional genes in the complete genome of POEF strain OTSVEF-60, which might be associated with the pathogenesis, spreading of ARGs and VGs, and subsequent treatment failure against this emerging avian pathogen with currently available antimicrobials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Farmer JJ III, Fanning GR, Davis BR, O’Hara CM, Riddle C, Hick-Brenner FW, Asbury MA, Lowery VA III et al (1985) Escherichia fergusonii and Enterobacter taylorae, two new species of Enterobacteriaceae isolated from clinical specimens. J Clin Microbiol 21(1):77–81 0095-1137/85/010077-05$02.00/0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Glover B, Wentzel J, Jenkins A, Van Vuuren M (2017) The first report of Escherichia fergusonii isolated from non-human primates, in Africa. One Health 4(3):70–75. https://doi.org/10.1016/j.onehlt.2017.05.001

    Article  Google Scholar 

  3. Adesina T, Nwinyi O, De N, Akinnola O, Omonigbehin E (2019) First detection of carbapenem-resistant Escherichia fergusonii strains harbouring beta-lactamase genes from clinical samples. Pathogens 8(4):164. https://doi.org/10.3390/pathogens8040164

    Article  CAS  PubMed Central  Google Scholar 

  4. Hariharan H, Lopez A, Conboy G, Coles M, Muirhead T (2007) Isolation of Escherichia fergusonii from the feces and internal organs of a goat with diarrhea. Canad Vet J 48(6):630–631

    Google Scholar 

  5. Herráez P, Rodriguez AF, de los Monteros AE, Acosta AB, Jaber JR, Castellano J, Castroa A (2005) Fibrinonecrotictyphlitis caused by Escherichia fergusonii in ostriches (Struthiocamelus). Avian Dis 49(1):167–169. https://doi.org/10.1637/7221-061104r

    Article  PubMed  Google Scholar 

  6. Oh JY, Kang MS, An BK, Shin EG, Kim MJ, Kwon JH, Kwon YK (2012) Isolation and epidemiological characterization of heat-labile enterotoxin-producing Escherichia fergusonii from healthy chickens. Vet Microbiol 160(1-2):17075–17175. https://doi.org/10.1016/j.vetmic.2012.05.020

    Article  Google Scholar 

  7. Weiss ATA, Lübke-Becker A, Krenz M, van der Grinten (2011) E. Enteritis and Septicemia in a Horse Associated With Infection by Escherichia fergusonii. J. Equine Vet. Sci. 31(7):361–364. https://doi.org/10.1016/j.jevs.2011.01.005

    Article  Google Scholar 

  8. Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S, Bidet P, Bingen E, Bonacorsi S, Bouchier C, Bouvet O, Calteau A, Chiapello H, Clermont O, Cruveiller S, Danchin A, Diard M, Dossat C, Karoui ME, Frapy E, Garry L, Ghigo JM, Gilles AM, Johnson J, le Bouguénec C, Lescat M, Mangenot S, Martinez-Jéhanne V, Matic I, Nassif X, Oztas S, Petit MA, Pichon C, Rouy Z, Ruf CS, Schneider D, Tourret J, Vacherie B, Vallenet D, Médigue C, Rocha EPC, Denamur E (2009) Organized genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 5(1):e1000344. https://doi.org/10.1371/journal.pgen.1000344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fegan N, Barlow RS, Gobius KS (2006) Escherichia coli O157 somatic antigen is present in an isolate of E. fergusonii. Curr Microbiol 52(6):482–486. https://doi.org/10.1007/s00284-005-0447-6

    Article  CAS  PubMed  Google Scholar 

  10. Forgetta V, Rempel H, Malouin F, Vaillancourt R Jr, Topp E, Dewar K, Diarra MS (2012) Pathogenic and multidrug-resistant Escherichia fergusonii from broiler chicken. Poult Sci 91(2):512–525. https://doi.org/10.3382/ps.2011-01738

    Article  CAS  PubMed  Google Scholar 

  11. Lagacé-Wiens PR, Baudry PJ, Pang P, Hammond G (2010) First description of an extended-spectrum-β-lactamase-producing multidrug-resistant Escherichia fergusonii strain in a patient with cystitis. J Clin Microbiol 48(6):2301–2302. https://doi.org/10.1128/JCM.00364-10

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gaastra W, Kusters JG, van Duijkeren E, Lipman LJA (2014) Escherichia fergusonii. Vet Microbiol 172(1-2):7–12. https://doi.org/10.1016/j.vetmic.2014.04.016

    Article  CAS  PubMed  Google Scholar 

  13. Al Amin M, Hoque MN, Siddiki AZ, Saha S, Kamal MM (2020) Antimicrobial resistance situation in animal health of Bangladesh. Vet World 13(12):2713–2727

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fricke WF, McDermott PF, Mammel MK, Zhao SH, Johnson TJ et al (2009) Antimicrobial resistance-conferring plasmids with similarity to virulence plasmids from avian pathogenic Escherichia coli strains in Salmonella enterica serovar Kentucky isolates from poultry. Appl Environ Microbiol 75(18):5963–5971. https://doi.org/10.1128/AEM.00786-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Saha O, Hoque MN, Islam OK, Rahaman M, Sultana M, Hossain MA (2020) Multidrug-resistant avian pathogenic Escherichia coli strains and association of their virulence genes in Bangladesh. Microorganisms 8(8):1135. https://doi.org/10.3390/microorganisms8081135

    Article  CAS  PubMed Central  Google Scholar 

  16. Fernandez-Alarcon C, Singer RS, Johnson TJ (2011) Comparative genomics of multidrug resistance-encoding IncA/C plasmids from commensal and pathogenic Escherichia coli from multiple animal sources. PLoS One 6(8):e23415. https://doi.org/10.1371/journal.pone.0023415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Parin U, Kirkan S, Arslan SS, Yuksel HT (2018) Molecular identification and antimicrobial resistence of Escherichia fergusonii and Escherichia coli from dairy cattle with diarrhoea. Vet Med 63(3):110–116. https://doi.org/10.17221/156/2017-VETMED

    Article  CAS  Google Scholar 

  18. Simmons K, Islam MR, Rempel H, Block G, Topp E, Diarra MS (2016) Antimicrobial resistance of Escherichia fergusonii isolated from broiler chickens. J Food Prot 79(6):929–938. https://doi.org/10.4315/0362-028X.JFP-15-575

    Article  CAS  PubMed  Google Scholar 

  19. Galetti R, Filho RACP, Ferreira JC, Varani AM, Darini ALC (2019) Antibiotic resistance and heavy metal tolerance plasmids: The antimicrobial bulletproof properties of Escherichia fergusonii isolated from poultry. Infect Drug Resist 12:1029–1033. https://doi.org/10.2147/IDR.S196411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wragg P, La Ragione RM, Best A, Reichel R, Anjum MF, Mafura M, Woodward MJ (2009) Characterization of Escherichia fergusonii isolates from farm animals using an Escherichia coli virulence gene array and tissue culture adherence assays. Res Vet Sci 86(1):27–35. https://doi.org/10.1016/j.rvsc.2008.05.014

    Article  CAS  PubMed  Google Scholar 

  21. Furtula V, Farrell EG, Diarrassouba F, Rempel H, Pritchard J, Diarra MS (2010) Veterinary pharmaceuticals and antibiotic resistance of Escherichia coli isolates in poultry litter from commercial farms and controlled feeding trials. Poult Sci 89(1):180–188. https://doi.org/10.3382/ps.2009-00198

    Article  CAS  PubMed  Google Scholar 

  22. Yu Z, Gunn L, Wall P, Fanning S (2017) Antimicrobial resistance and its association with tolerance to heavy metals in agriculture production. Food Microbiol 64:23–32. https://doi.org/10.1016/j.fm.2016.12.009

    Article  CAS  PubMed  Google Scholar 

  23. Momtaz S, Hossain MA (2018) Occurrence of pathogenic and multidrug resistant Salmonella spp. Biores Comm 4(2):506–515. https://doi.org/10.3329/bjm.v34i2.39617

    Article  Google Scholar 

  24. Hoque MN, Istiaq A, Clement RA, Gibson KM, Saha O, Islam OK, Hossain MA (2020a) Insights into the resistome of bovine clinical mastitis microbiome, a key factor in disease complication. Front Microbiol 11:860. https://doi.org/10.3389/fmicb.2020.00860

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hoque MN, Istiaq A, Rahman MS, Islam MR, Anwar A, Siddiki AZ, Sultana M, Crandall KA, Hossain MA (2020b) Microbiome dynamics and genomic determinants of bovine mastitis. Genomics. 112(6):5188–5203

    Article  CAS  PubMed  Google Scholar 

  26. Slatko BE, Gardner AF, Ausubel FM (2018) Overview of next-generation sequencing technologies. Curr Prot, Mol Biol 122(1):e59. https://doi.org/10.1002/cpmb.59

    Article  Google Scholar 

  27. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477. https://doi.org/10.1089/cmb.2012.0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Darling AC, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14(7):1394–1403. https://doi.org/10.1101/gr.2289704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9(1):1–15. https://doi.org/10.1186/1471-2164-9-75

    Article  CAS  Google Scholar 

  31. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35(2):182–185. https://doi.org/10.1093/nar/gkm321

    Article  Google Scholar 

  32. Alikhan NF, Petty NK, Zakour NLB, Beatson SA (2011) BLAST ring image generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12(1):402. https://doi.org/10.1186/1471-2164-12-402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57(1):81–91. https://doi.org/10.1099/ijs.0.64483-0

    Article  CAS  PubMed  Google Scholar 

  34. Lowe TM, Eddy SR (1997) TRNAscan-SE: a program for improved detection of transfer RNA Genes in genomic sequence. Nucleic Acids Res 25(5):955–964. https://doi.org/10.1093/nar/25.5.955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lagesen K, Hallin P, Rødland EA, Stærfeldt HH, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35(9):3100–3108. https://doi.org/10.1093/nar/gkm160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS, Nielsen EM, Aarestrup FM (2014) Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol 52(5):1501–1510. https://doi.org/10.1128/JCM.03617-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang Q, Ye Y (2017) Not all predicted CRISPR–Cas systems are equal: isolated cas genes and classes of CRISPR like elements. BMC Bioinform 18(1):92. https://doi.org/10.1186/s12859-017-1512

    Article  Google Scholar 

  38. Siguier P, Pérochon J, Lestrade L, Mahillon J, Chandler M (2006) ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Rres 34(1):32–36. https://doi.org/10.1093/nar/gkj014

    Article  CAS  Google Scholar 

  39. Medema MH, Blin K, Cimermancic P, De Jager V, Zakrzewski P, Fischbach MA, Weber T, Takano E, Breitling R (2011) antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 39(2):339–346. https://doi.org/10.1093/nar/gkr466

    Article  CAS  Google Scholar 

  40. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  Google Scholar 

  41. Letunic I, Bork P (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44(1):242–245. https://doi.org/10.1093/nar/gkw290

    Article  CAS  Google Scholar 

  42. Olowe B, Oluyege J, Famurewa O, Ogunniran A, Adelegan O (2017) Molecular identification of Escherichia coli and new emerging enteropathogen, Escherichia fergusonii, from drinking water sources in Ado-Ekiti, Ekiti State, Nigeria. J Microbiol Res 7:45–54. https://doi.org/10.5923/j.microbiology.20170703.01

    Article  Google Scholar 

  43. Adékambi T, Colson P, Drancourt M (2003) rpoB-based identification of nonpigmented and late-pigmenting rapidly growing mycobacteria. J Clin Microbiol 41(12):5699–5708. https://doi.org/10.1128/JCM.41.12.5699-5708.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Puttamreddy S, Cornick NA, Minion FC (2010) Genome-wide transposon mutagenesis reveals a role for pO157 genes in biofilm development in Escherichia coli O157: H7 EDL933. Infect Immun 78(6):2377–2384. https://doi.org/10.1128/IAI.00156-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Karczmarczyk M, Abbott Y, Walsh C, Leonard N, Fanning S (2011) Characterization of multidrug-resistant Escherichia coli isolates from animals presenting at a university veterinary hospital. Appl Environ Microbiol 77(20):7104–7112. https://doi.org/10.1128/AEM.00599-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. White PA, Rawlinson WD (2001) Current status of the aadA and dfr gene cassette families. J Antimicrob Chemother 47(4):495–496. https://doi.org/10.1093/jac/47.4.495

    Article  CAS  PubMed  Google Scholar 

  47. Nagakubo S, Nishino K, Hirata T (2002) The putative response regulator BaeR stimulates multidrug resistance of Escherichia coli via a novel multidrug exporter system, MdtABC the putative response regulator BaeR stimulates multidrug resistance of Escherichia coli via a novel multidrug exporter. J Bacteriol 184(15):4161–4167. https://doi.org/10.1128/JB.184.15.4161-4167.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bohnert JA, Schuster S, Fähnrich E, Trittler R, Kern WV (2007) Altered spectrum of multidrug resistance associated with a single point mutation in the Escherichia coli RND-type MDR efflux pump YhiV (MdtF). J Antimicrob Chemother 59(6):1216–1222. https://doi.org/10.1093/jac/dkl426

    Article  CAS  PubMed  Google Scholar 

  49. Yung PY, Lo Grasso L, Mohidin AF, Acerbi E, Hinks J, Seviour T, Marsili E, Lauro FM (2016) Global transcriptomic responses of Escherichia coli K-12 to volatile organic compounds. Sci Rep 6:19899. https://doi.org/10.1038/srep19899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Roberts MC (2005) Update on acquired tetracycline resistance genes. FEMS Microbiol. Let. 45(2):195–203. https://doi.org/10.1016/j.femsle.2005.02.034

    Article  CAS  Google Scholar 

  51. Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11(6):371–384. https://doi.org/10.1038/nrmicro3028

    Article  CAS  PubMed  Google Scholar 

  52. McIntosh D, Cunningham M, Ji B, Fekete FA, Parry EM, Clark SE, Zalinger ZB, Gilg IC, Danner GR, Johnson KA, Beattie M, Ritchie R (2008) Transferable, multiple antibiotic and mercury resistance in Atlantic Canadian isolates of Aeromonas salmonicida subsp. salmonicida is associated with carriage of an IncA/C plasmid similar to the Salmonella enterica plasmid pSN254. J Antimicrob Chemother 61(6):1221–1228. https://doi.org/10.1093/jac/dkn123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hellweger FL (2013) Escherichia coli adapts to tetracycline resistance plasmid (pBR322) by mutating endogenous potassium transport: in silico hypothesis testing. FEMS Microbiol. Ecol. 83(3):622–631. https://doi.org/10.1111/1574-6941.12019

    Article  CAS  Google Scholar 

  54. La Mendola D, Giacomelli C, Rizzarelli E (2016) Intracellular bioinorganic chemistry and cross talk among different-omics. Curr Top Med Chem 16(27):3103–3130

    Article  PubMed  Google Scholar 

  55. Rowe-Magnus DA, Mazel D (2002) The role of integrons in antibiotic resistance gene capture. Int J Med Microbiol 292(2):115–125. https://doi.org/10.1078/1438-4221-00197

    Article  CAS  PubMed  Google Scholar 

  56. Partridge SR, Kwong SM, Firth N, Jensen SO (2018) Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev 31(4):88–17

    Article  Google Scholar 

  57. Louwen R, Staals RH, Endtz HP, van Baarlen P, van der Oost J (2014) The role of CRISPR-Cas systems in virulence of pathogenic bacteria. Microbiol Mol Biol Rev 78(1):74–88

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hoque MN, Istiaq A, Clement RA, Sultana M, Crandall KA, Siddiki AZ, Hossain MA (2019) Metagenomic deep sequencing reveals association of microbiome signature with functional biases in bovine mastitis. Sci Rep 9(1):1–4. https://doi.org/10.1038/s41598-019-49468-4

    Article  CAS  Google Scholar 

  59. Balqis U, Hambal M, Admi M, Safika S, Meutia N, Sugito, Dasrul, Abdullah MA, Ferasyi TR, Lubis TM, Abrar M (2018) Escherichia fergusonii identified in preputial swabs from healthy Aceh cattle by phylogenetic 16S rRNA analysis. Malay J Microbiol 4(3):229–235. https://doi.org/10.21161/mjm.107417

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Bangladesh Academy of Science–United States Department of Agriculture (BAS–USDA) for supporting this project. We would also like to acknowledge Bangabandhu Science & Technology Fellowship Trust for supporting Otun Saha as PhD student. We would like to further acknowledge University Grants Commission (UGC), Ministry of Science and Technology, Bangladesh for supporting reagents and equipment.

Funding

This work was supported by the grant from Bangladesh Academy of Science–United States Department of Agriculture (BAS–USDA) (Grant no: BAS -USDA PALS DU LSc-34).

Author information

Authors and Affiliations

Authors

Contributions

O.S. carried out the studies (sequencing, molecular and data analysis). O.S. and N.N.R. participated in drafting the manuscript. M.N.H edited and revised the final manuscript. M.S. and M.A.H. developed the hypothesis, supervised the whole work and helped to prepare and revise the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Munawar Sultana or M. Anwar Hossain.

Ethics declarations

Ethics approval and consent to participate

Ethical approval was granted from the Ethics Committee of the Faculty of Biological Sciences, University of Dhaka, Bangladesh who has approved the procedure under the Reference 71/Biol.Scs./2018-2019.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Tânia A. Tardelli Gomes

Supplementary Information

ESM 1

(DOCX 256 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, O., Rakhi, N.N., Hoque, M.N. et al. Genome-wide genetic marker analysis and genotyping of Escherichia fergusonii strain OTSVEF-60. Braz J Microbiol 52, 989–1004 (2021). https://doi.org/10.1007/s42770-021-00441-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-021-00441-2

Keywords

Navigation