Skip to main content
Log in

Alteromonas Aquimaris sp. nov., Isolated from Surface Seawater

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A Gram-negative, aerobic, motile by flagellum, and rod-shaped bacterium, designated ASW11-7T, was isolated from coastal surface seawater sample collected from the Yellow Sea, PR China. Strain ASW11-7T grew optimally at 37℃, 4.0% (w/v) NaCl and pH 7.0. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain ASW11-7T belongs to the genus Alteromonas and most closely related to Alteromonas ponticola MYP5T (99.6% similarity), followed by Alteromonas confluentis DSSK2-12T (98.2%), Alteromonas lipolytica JW12T (98.2%), and Alteromonas hispanica F-32T (98.0%). The draft genome of strain ASW11-7T had a length of 3,530,922 bp with a G + C content of 44.9%, predicting 3108 coding sequences, 5 rRNA, 4 ncRNAs, 49 tRNAs genes, and 18 pseudogenes. The average nucleotide identity and digital DNA-DNA hybridization values between genomic sequences of strain ASW11-7T and closely related species of Alteromonas were in ranges of 66.9–77.8% and 18.3–27.5%, respectively. The major fatty acids of strain ASW11-7T were C16:0, summed feature 3 (C16:1ω7c/C16:1ω6c), and summed feature 8 (C18:1ω7c/C18:1ω6c). The predominant respiratory quinone was Q-8 and the major polar lipids were phosphatidylethanolamine and phosphatidylglycerol. Based on the phenotypic properties, genotypic distinctiveness, and chemotaxonomic features, strain ASW11-7T is considered to represent a novel Alteromonas species, for which the name Alteromonas aquimaris sp. nov. is proposed. The type strain is ASW11-7T (= KCTC 92853T = MCCC 1K07240T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Baumann L, Baumann P, Mandel M, Allen RD (1972) Taxonomy of aerobic marine eubacteria. J Bacteriol 110:402–429. https://doi.org/10.1128/jb.110.1.402-429.1972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Parte AC, Carbasse JS, Meier-Kolthoff JP, Reimer LC, Göker M (2020) List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 70(11):5607–5612. https://doi.org/10.1099/ijsem.0.004332

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chen YG, Xiao HD, Tang SK, Zhang YQ, Borrathybay E, Cui XL, Li WJ, Liu YQ (2009) Alteromonas halophila sp. nov., a new moderately halophilic bacterium isolated from a sea anemone. Antonie Van Leeuwenhoek 96:259–266. https://doi.org/10.1007/s10482-009-9341-8

    Article  CAS  PubMed  Google Scholar 

  4. Sawabe T, Tanaka R, Iqbal MM, Tajima K, Ezura Y, Ivanova EP, Christen R (2000) Assignment of Alteromonas elyakovii KMM 162T and five strains isolated from spot-wounded fronds of Laminaria japonica to Pseudoalteromonas elyakovii comb. nov. and the extended description of the species. Int J Syst Evol Microbiol 50:265–271. https://doi.org/10.1099/00207713-50-1-265

    Article  CAS  PubMed  Google Scholar 

  5. Yoon JH, Yeo SH, Oh TK, Park YH (2004) Alteromonas litorea sp. nov., a slightly halophilic bacterium isolated from an intertidal sediment of the Yellow Sea in Korea. Int J Syst Evol Microbiol 54:1197–1201. https://doi.org/10.1099/ijs.0.63079-0

    Article  CAS  PubMed  Google Scholar 

  6. Ye MQ, Han JR, Wang C, Du ZJ (2019) Alteromonas sediminis sp. nov., isolated from sediment in a sea cucumber culture pond. Int J Syst Evol Microbiol 69:1579–1584. https://doi.org/10.1099/ijsem.0.003358

    Article  CAS  PubMed  Google Scholar 

  7. Jin QW, Hu YH, Sun L (2018) Alteromonas oceani sp. nov., isolated from deep-sea sediment of a hydrothermal field. Int J Syst Evol Microbiol 68:657–662. https://doi.org/10.1099/ijsem.0.002560

    Article  CAS  PubMed  Google Scholar 

  8. Yoon JH, Kim IG, Kang KH, Oh TK, Park YH (2003) Alteromonas marina sp. nov., isolated from sea water of the East Sea in Korea. Int J Syst Evol Microbiol 53:1625–1630. https://doi.org/10.1099/ijs.0.02536-0

    Article  CAS  PubMed  Google Scholar 

  9. Shi XL, Wu YH, Jin XB, Wang CS, Xu XW (2017) Alteromonas lipolytica sp. nov., a poly-beta-hydroxybutyrate-producing bacterium isolated from surface seawater. Int J Syst Evol Microbiol 67:237–242. https://doi.org/10.1099/ijsem.0.001604

    Article  CAS  PubMed  Google Scholar 

  10. Park S, Choi SJ, Park JM, Yoon JH (2017) Alteromonas aestuariivivens sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 67:2791–2797. https://doi.org/10.1099/ijsem.0.002023

    Article  CAS  PubMed  Google Scholar 

  11. Bowman JP, McMeekin TA (2015) Alteromonas. In Bergey’s Manual of Systematics of Archaea and Bacteria (eds M.E. Trujillo, S. Dedysh, P. DeVos, B. Hedlund, P. Kämpfer, F.A. Rainey and W.B. Whitman). https://doi.org/10.1002/9781118960608.gbm01089

  12. Niu HJ​ D, KS​ G, L​ S, LP​ W, Q​, Zhang YJ, Li Y​ X, CQ​, Pei CX (2022) Gramella sediminis sp. nov., isolated from a tidal flat of the Yellow Sea. Int J Syst Evol Microbiol 72:005621. https://doi.org/10.1099/ijsem.0.005621

    Article  CAS  Google Scholar 

  13. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. https://doi.org/10.1099/ijsem.0.001755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tamura K, Stecher G, Kumar S (2021) MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol 38:3022–3027. https://doi.org/10.1093/molbev/msab120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376. https://doi.org/10.1007/BF01734359

    Article  CAS  PubMed  Google Scholar 

  16. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  PubMed  Google Scholar 

  17. Rzhetsky A, Nei M (1992) A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 9:945–967. https://doi.org/10.1093/oxfordjournals.molbev.a040771

    Article  CAS  Google Scholar 

  18. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. https://doi.org/10.1007/BF01731581

    Article  CAS  PubMed  Google Scholar 

  19. Jackman SD, Vandervalk BP, Mohamadi H, Chu J, Yeo S, Hammond SA, Jahesh G, Khan H, Coombe L, Warren R, Birol I (2017) ABySS 2.0: resource-efficient assembly of large genomes using a Bloom filter. Genome res 27:768–777. https://doi.org/10.1101/gr.214346.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2017) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25(7):1043–1055. https://doi.org/10.1101/gr.186072.114

    Article  CAS  Google Scholar 

  21. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt K, Borodovsky M, Ostell J (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44:6614–6624. https://doi.org/10.1093/nar/gkw569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60. https://doi.org/10.1186/1471-2105-14-60

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lee I, Ouk Kim Y, Park SC, Chun J (2016) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100–1103. https://doi.org/10.1099/ijsem.0.000760

    Article  CAS  PubMed  Google Scholar 

  24. Lechner M, Findeiß S, Steiner L, Marz M, Stadler PF, Prohaska SJ (2011) Proteinortho: detection of (Co-)orthologs in large-scale analysis. BMC Bioinformatics 12:124. https://doi.org/10.1186/1471-2105-12-124

    Article  PubMed  PubMed Central  Google Scholar 

  25. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids re 32:1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  Google Scholar 

  26. Buck JD (1982) Non-staining (Koh) method for determination of gram reactions of marine-bacteria. Appl Environ Microbiol 44:992–993. https://doi.org/10.1128/aem.44.4.992-993.1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao GZ, Li J, Zhu WY, Li XP, Tian SZ, Zhao LX, Xu LH, Li WJ (2011) Pseudonocardia bannaensis sp. nov., a novel actinomycete isolated from the surface-sterilized roots of Artemisia annua L. Antonie Van Leeuwenhoek 100:35–42. https://doi.org/10.1007/s10482-011-9562-5

    Article  CAS  PubMed  Google Scholar 

  28. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, DC, pp 607–654

    Google Scholar 

  29. Ginocchio CC (2002) Role of NCCLS in antimicrobial susceptibility testing and monitoring. Am J Health Syst Pharm 59:S7–11. https://doi.org/10.1093/ajhp/59.suppl_3.S7

    Article  PubMed  Google Scholar 

  30. Kämpfer P, Kroppenstedt RM (1996) Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005. https://doi.org/10.1139/m96-128

    Article  Google Scholar 

  31. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241. https://doi.org/10.1016/0167-7012(84)90018-6

    Article  CAS  Google Scholar 

  32. Kim YO, Park IS, Park S, Yoon JH (2020) Alteromonas ponticola sp. nov., a gammaproteobacterium isolated from seawater. Int J Syst Evol Microbiol 70:6396–6401. https://doi.org/10.1099/ijsem.0.004545

    Article  CAS  PubMed  Google Scholar 

  33. Shen X, Zhu S, Dong B, Chen Y, Xue Z, Ren N, Chen T, Chen X, Yang J, Chen J (2020) Alteromonas profundi sp. nov., isolated from the Indian Ocean. Int J Syst Evol Microbiol 70:4531–4536. https://doi.org/10.1099/ijsem.0.004308

    Article  CAS  PubMed  Google Scholar 

  34. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91. https://doi.org/10.1099/ijs.0.64483-0

    Article  CAS  PubMed  Google Scholar 

  35. Konstantinidis KT, Tiedje JM (2005) Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 102:2567–2572. https://doi.org/10.1073/pnas.0409727102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Youth Foundation of the Shanxi Science and Technology Department (201901D211375), National Natural Science Foundation of China (Grant No. 32002143, 31972590), Excellent Doctoral Work Award of Shanxi Province (SXYBKY2019024, SXYBKY2019025), Science and Technology Innovation Fund Project of Shanxi Agricultural University (2020BQ07), Animal Husbandry and ‘1331 project’ Key Discipline Construction program of Shanxi Province.

Author information

Authors and Affiliations

Authors

Contributions

QW performed the experiments and wrote the manuscript; XYH carried out chemotaxonomic analysis; LPS, HJN and CXP performed phylogenetic analysis; YL and CQX designed and supervised the study. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Yi Li or Cheng-Qiang Xia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

This study was not performed on human or animals, therefore no ethical approval is required.

Consent for publication

All authors approve to submit and publication to the journal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA gene sequence and the genome sequence of strain ASW11-7T are OP795875 and JAPFRD000000000, respectively.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Hu, XY., Sun, LP. et al. Alteromonas Aquimaris sp. nov., Isolated from Surface Seawater. Curr Microbiol 80, 343 (2023). https://doi.org/10.1007/s00284-023-03472-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03472-0

Navigation