Skip to main content

Advertisement

Log in

Cervicovaginal Bacillus velezensis Isolate: A Potential Probiotic and an Antagonist Against Candida and Staphylococcus

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The cervicovaginal microbiota is an essential aspect of women’s reproductive and overall health. In this study, we aimed to evaluate the probiotic properties of a cervicovaginal isolate, obtained from a gynecologically healthy woman and assess its antagonistic effect against various microorganisms isolated from the vagina. Cytological examination was performed using Papanicolaou staining, and the isolated microorganism was identified via 16S Ribosomal RNA Gene Sequence Analysis. Probiotic characteristics were evaluated by determining the tolerance of the isolate to low pH, different NaCl concentrations, and bile salts. Bacterial adherence to stainless steel sheets, antibiotic susceptibility, and antimicrobial activity tests were also conducted and analyzed. Antimicrobial tests and antagonistic activities were assessed through disc diffusion assays. The cervicovaginal isolate was identified as B. velezensis ON116948 and was found to be tolerant to low pH, high NaCl and 0.3% bile salts. Additionally, it exhibited adherence. With the exception of amoxicillin/clavulanic acid (AMC) (30 μg) and oxacillin (OX) (1 μg), this isolate was susceptible to all the antibiotics tested. Candida species did not grow on B. velezensis spread media, while B. velezensis was able to grow on C. albicans, C. glabrata, C. tropicalis, S. condimenti and S. epidermidis spread media with growth zones of 13.7 ± 0.6, 13.3 ± 0.6, 14.2 ± 4.4, 10.5 ± 0.5 and 16.0 ± 1.0 (around discs), respectively. Our findings suggest that the cervicovaginal B. velezensis ON116948 isolate exhibits probiotic properties and antagonistic activity. These results provide important insights into the potential use of this isolate as a probiotic for the prevention of vaginal infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

References

  1. Anahtar MN, Gootenberg DB, Mitchell CM, Kwon DS (2018) Cervicovaginal microbiota and reproductive health: the virtue of simplicity. Cell Host Microbe 23(2):159–168. https://doi.org/10.1016/j.chom.2018.01.013

    Article  CAS  PubMed  Google Scholar 

  2. Gaspar C, Donders GG, Palmeira-de-Oliveira R, Queiroz JA, Tomaz C, Martinez-de-Oliveira J, Palmeira-de-Oliveira A (2018) Bacteriocin production of the probiotic Lactobacillus acidophilus KS400. AMB Expr. https://doi.org/10.1186/s13568-018-0679-z

    Article  Google Scholar 

  3. Barrientos-Durán A, Fuentes-López A, de Salazar A, Plaza-Díaz J, García F (2020) Reviewing the composition of vaginal microbiota: inclusion of nutrition and probiotic factors in the maintenance of eubiosis. Nutrients 12(2):1–30. https://doi.org/10.3390/nu12020419

    Article  CAS  Google Scholar 

  4. Chen X, Huang H, Zhang S, Zhang Y, Jiang J, Qiu Y, Liu J, Wang A (2021) Bacillus velezensis wz-37, a new broad-spectrum biocontrol strain, promotes the growth of tomato seedlings. Agriculture 11(7):1–14. https://doi.org/10.3390/agriculture11070581

    Article  CAS  Google Scholar 

  5. Kumherová M, Veselá K, Kosová M, Mašata J, Horáčková Š, Šmidrkal J (2021) Novel potential probiotic Lactobacilli for prevention and treatment of vulvovaginal infections. Probiotics Antimicrob Prot 13(1):163–172. https://doi.org/10.1007/s12602-020-09675-2

    Article  CAS  Google Scholar 

  6. Donmez HG, Cagan M, Fadiloglu E, Unal C, Onder SC, Beksac MS (2020) Is bacterial vaginosis associated with autoimmune antibody positivity? Cytopathology 4:298–302. https://doi.org/10.1111/cyt.12846

    Article  Google Scholar 

  7. Donmez HG, Sahal G, Akgor U, Cagan M, Ozgul N, Beksac MS (2020) The relationship between the presence of HPV infection and biofilm formation in cervicovaginal smears. Infection 48(5):735–740. https://doi.org/10.1007/s15010-020-01478-5

    Article  CAS  PubMed  Google Scholar 

  8. Miller EA, Beasley DAE, Dunn RR, Archie EA (2016) Lactobacilli dominance and vaginal pH: why is the human vaginal microbiome unique? Front Microbiol 7:1–13. https://doi.org/10.3389/fmicb.2016.01936

    Article  Google Scholar 

  9. Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, McCulle SL, Karlebach S, Gorle R, Russell J, Tacket CO, Brotman RM, Davis CC, Ault K, Peralta L, Forney LJ (2011) Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci USA 108(1):4680–4687. https://doi.org/10.1073/pnas.1002611107

    Article  PubMed  Google Scholar 

  10. Jang SJ, Lee K, Kwon B, You HJ, Ko GP (2019) Vaginal lactobacilli inhibit growth and hyphae formation of Candida albicans. Sci Rep 9(1):1–9. https://doi.org/10.1038/s41598-019-44579-4

    Article  CAS  Google Scholar 

  11. Rabbee MF, Sarafat Ali M, Choi J, Hwang BS, Jeong SC, Baek K (2019) Bacillus velezensis: a valuable member of bioactive molecules within plant microbiomes. Molecules 24(6):1–13. https://doi.org/10.3390/molecules24061046

    Article  CAS  Google Scholar 

  12. Khalid F, Khalid A, Fu Y, Hu Q, Zheng Y, Khan S, Wang Z (2021) Potential of Bacillus velezensis as a probiotic in animal feed: a review. J Microbiol 59(7):627–633. https://doi.org/10.1007/s12275-021-1161-1

    Article  PubMed  Google Scholar 

  13. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10(3):512–526. https://doi.org/10.1093/oxfordjournals.molbev.a040023

    Article  CAS  PubMed  Google Scholar 

  14. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mulaw G, Sisay Tessema T, Muleta D, Tesfaye A (2019) In vitro evaluation of probiotic properties of lactic acid bacteria isolated from some traditionally fermented Ethiopian food products. Int J Microbiol 2019:7179514. https://doi.org/10.1155/2019/7179514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nath S, Sikidar J, Roy M, Deb B (2020) In vitro screening of probiotic properties of Lactobacillus plantarum isolated from fermented milk product. Food Qual Saf 4(4):213–223. https://doi.org/10.1093/fqsafe/fyaa026

    Article  CAS  Google Scholar 

  17. Sanhueza E, Paredes-Osses E, González CL, García A (2015) Effect of PH in the survival of Lactobacillus salivarius strain UCO_979C wild type and the Ph acid acclimated variant. Electron J Biotechnol 18(5):343–346. https://doi.org/10.1016/j.ejbt.2015.06.005

    Article  Google Scholar 

  18. Thakkar P, Modi HA, Prajapati JB (2015) Isolation, characterization and safety assessment of lactic acid bacterial ısolates from fermented food products. Int J Curr Microbiol Appl Sci 4(4):713–725

    CAS  Google Scholar 

  19. Kang M, Su X, Yun L, Shen Y, Feng J, Yang G, Meng X, Zhang J, Chang X (2022) Evaluation of probiotic characteristics and whole genome analysis of Bacillus velezensis R-71003 isolated from the intestine of common carp (Cyprinus carpio L.) for its use as a probiotic in aquaculture. Aquacult Rep. https://doi.org/10.1016/j.aqrep.2022.101254

    Article  Google Scholar 

  20. Sahal G, Bilkay IS (2015) Multidrug resistance by biofilm-forming clinical strains of Proteus mirabilis. Asian Biomed 9(4):535–554. https://doi.org/10.5372/1905-7415.0904.424

    Article  CAS  Google Scholar 

  21. Sahal G, Bilkay IS (2018) Distribution of clinical isolates of Candida spp. and antifungal susceptibility of high biofilm-forming Candida isolates. Rev Soc Bras Med Trop 51(5):644–650. https://doi.org/10.1590/0037-8682-0136-2018

    Article  PubMed  Google Scholar 

  22. Sahal G, Bilkay IS (2014) Multi drug resistance in strong biofilm forming clinical isolates of Staphylococcus epidermidis. Braz J Microbiol 45(2):539–544. https://doi.org/10.1590/s1517-83822014005000042

    Article  PubMed  PubMed Central  Google Scholar 

  23. Handalishy II, Behery MA, Elkhouly M (2014) Comparative study between probiotic vaginal tampons and oral metronidazole in treatment of bacterial vaginosis. Al-Azhar Assiut Med j 12:185–203

    Google Scholar 

  24. Lewis FMT, Bernstein KT, Aral SO (2017) Vaginal microbiome and its relationship to behavior, sexual health, and sexually transmitted diseases. Obstet Gynecol 129(4):643–654. https://doi.org/10.1097/AOG.0000000000001932

    Article  PubMed  PubMed Central  Google Scholar 

  25. Freire AD, Custódio AI, Filho JQ, Freitas JC, Gonçalves AK, Cobucci RN (2020) The association between abnormal vaginal flora and cytological evidence of HPV with prematurity in high-risk pregnant women. Gynecol Obstet Reprod Med 26(3):173–178

    Article  Google Scholar 

  26. Tortelli BA, Lewis WG, Allsworth JE, Member-Meneh N, Foster LR, Reno HE, Peipert JF, Fay JC, Lewis AL (2020) Associations between the vaginal microbiome and Candida colonization in women of reproductive age. Am J Obstet Gynecol 222(5):471.e1-471.e9. https://doi.org/10.1016/j.ajog.2019.10.008

    Article  CAS  PubMed  Google Scholar 

  27. Curty G, de Carvalho PS, Soares MA (2020) The role of the cervicovaginal microbiome on the genesis and as a biomarker of premalignant cervical intraepithelial neoplasia and invasive cervical cancer. Int J Mol Sci 21(1):222. https://doi.org/10.3390/ijms21010222

    Article  CAS  Google Scholar 

  28. Goldstein EJC, Tyrrell KL, Citron DM (2015) Lactobacillus species: taxonomic complexity and controversial susceptibilities. Clin Infect Dis 60(2):S98–S107. https://doi.org/10.1093/cid/civ072

    Article  CAS  PubMed  Google Scholar 

  29. Fan B, Wang C, Song X, Ding X, Wu L, Wu H, Gao X, Borriss R (2018) Bacillus velezensis FZB42 in 2018 the gram-positive model strain for plant growth promotion and biocontrol. Front Microbiol 9:2491. https://doi.org/10.3389/fmicb.2018.02491

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jiang CH, Liao MJ, Wang HK, Zheng MZ, Xu JJ, Guo JH (2018) Bacillus velezensis, a potential and efficient biocontrol agent in control of pepper gray mold caused by Botrytis cinerea. Biol Control 12:147–157. https://doi.org/10.1016/j.biocontrol.2018.07.017

    Article  Google Scholar 

  31. Yi Y, Zhang Z, Zhao F, Liu H, Yu L, Zha J, Wang G (2018) Probiotic potential of Bacillus velezensis JW: antimicrobial activity against fish pathogenic bacteria and immune enhancement effects on Carassius auratus. Fish Shellfish Immunol 78:322–330. https://doi.org/10.1016/j.fsi.2018.04.055

    Article  CAS  PubMed  Google Scholar 

  32. Pandin C, Darsonval M, Mayeur C, Le Coq D, Aymerich S, Briandet R (2019) Biofilm formation and synthesis of Antimicrobial compounds by the biocontrol agent Bacillus velezensis QST713 in an Agaricus bisporus compost micromodel. Appl Environ Microbiol 85(12):e00327-e419. https://doi.org/10.1128/AEM.00327-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rabbee MF, Hwang BS, Baek KH (2023) Bacillus velezensis: a beneficial biocontrol agent or facultative phytopathogen for sustainable agriculture. Agronomy 13(3):840. https://doi.org/10.3390/agronomy13030840

    Article  CAS  Google Scholar 

  34. Yuan H, Shi B, Wang L, Huang T, Zhou Z, Hou H, Tu H (2022) Isolation and characterization of Bacillus velezensis strain P2–1 for biocontrol of apple postharvest decay caused by Botryosphaeria dothidea. Front Microbiol 12:808938. https://doi.org/10.3389/fmicb.2021.808938

    Article  PubMed  PubMed Central  Google Scholar 

  35. Thurlow CM, Williams MA, Carrias A, Ran C, Newman M, Tweedie J, Allison E, Jescovitch LN, Wilson AE, Terhune JS, Liles MR (2019) Bacillus velezensis AP193 exerts probiotic effects in channel catfish (Ictalurus punctatus) and reduces aquaculture pond eutrophication. Aquaculture 503:347–356. https://doi.org/10.1016/j.aquaculture.2018.11.051

    Article  Google Scholar 

  36. Fooks LJ, Gibson GR (2002) In vitro investigations of the effect of probiotics and prebiotics on selected human intestinal pathogens. FEMS Microbiol Ecol 9(1):67–75. https://doi.org/10.1016/S0168-6496(01)00197-0

    Article  Google Scholar 

  37. Torres-Sánchez A, Pardo-Cacho J, López-Moreno A, Ruiz-Moreno Á, Cerk K, Aguilera M (2021) Antimicrobial effects of potential probiotics of Bacillus spp. isolated from human microbiota: in vitro and in silico methods. Microorganisms 9(8):1615. https://doi.org/10.3390/microorganisms9081615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Borah T, Gogoi B, Khataniar A, Gogoi M, Das A, Borah D (2019) Probiotic characterization of indigenous Bacillus velezensis strain DU14 isolated from Apong, a traditionally fermented rice beer of Assam. Biocatal Agric Biotechnol 18:101008. https://doi.org/10.1016/j.bcab.2019.01.046

    Article  Google Scholar 

  39. Prabhurajeshwar C, Chandrakanth RK (2017) Probiotic potential of Lactobacilli with antagonistic activity against pathogenic strains: an in vitro validation for the production of inhibitory substances. Biomed J 40(5):270–283. https://doi.org/10.1016/j.bj.2017.06.008

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dunne C, O’Mahony L, Murphy L, Thornton G, Morrissey D, O’Halloran S, Feeney M, Flynn S, Fitzgerald G, Daly C, Kiely B, O’Sullivan GC, Shanahan F, Collins JK (2001) In vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings. Am J Clin Nutr 73(2):386S-392S. https://doi.org/10.1093/ajcn/73.2.386s

    Article  CAS  PubMed  Google Scholar 

  41. Mandal S, Puniya AK, Singh K (2006) Effect of alginate concentrations on survival of microencapsulated Lactobacillus casei NCDC-298. Int Dairy J 16(10):1190–1195. https://doi.org/10.1016/j.idairyj.2005.10.005

    Article  CAS  Google Scholar 

  42. Darmastuti A, Hasan PN, Wikandari R, Utami T, Rahayu ES, Suroto DA (2021) Adhesion properties of Lactobacillus plantarum Dad-13 and Lactobacillus plantarum Mut-7 on Sprague Dawley rat intestine. Microorganisms 9(11):2336. https://doi.org/10.3390/microorganisms9112336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Feito J, Contente D, Ponce-Alonso M, Díaz-Formoso L, Araújo C, Peña N, Borrero J, Gómez-Sala B, Del Campo R, Muñoz-Atienza E, Hernández PE, Cintas LM (2022) Draft genome sequence of Lactococcus lactis subsp. cremoris WA2–67: a promising Nisin-producing probiotic strain isolated from the rearing environment of a Spanish rainbow trout (Oncorhynchus mykiss, Walbaum) farm. Microorganisms 10(3):521. https://doi.org/10.3390/microorganisms10030521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kamble A, Naik S, Talathi M, Jadhav D, Pingale S, Kaul-Ghanekar R (2022) Cervicovaginal microbiota isolated from healthy women exhibit probiotic properties and antimicrobial activity against pathogens isolated from cervical cancer patients. Arch Microbiol 204(8):491. https://doi.org/10.1007/s00203-022-03103-5

    Article  CAS  PubMed  Google Scholar 

  45. Ranjit E, Raghubanshi BR, Maskey S, Parajuli P (2018) Prevalence of bacterial vaginosis and its association with risk factors among nonpregnant women: a hospital based study. Int J Microbiol 2018:8349601. https://doi.org/10.1155/2018/8349601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang W, Guo H, Cao C, Li L, Kwok LY, Zhang H, Sun Z (2017) Adaptation of Lactobacillus casei Zhang to gentamycin involves an alkaline shock protein. Front Microbiol 8:2316. https://doi.org/10.3389/fmicb.2017.02316

    Article  PubMed Central  Google Scholar 

  47. Mancabelli L, Mancino W, Lugli GA, Argentini C, Longhi G, Milani C, Viappiani A, Anzalone R, Bernasconi S, van Sinderen D, Ventura M, Turroni F (2021) Amoxicillin-clavulanic acid resistance in the genus Bifidobacterium. Appl Environ Microbiol 87(7):e03137-e3220. https://doi.org/10.1128/AEM.03137-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Duche RT, Singh A, Wandhare AG, Sangwan V, Sihag MK, Nwagu TNT, Panwar H, Ezeogu LI (2023) Antibiotic resistance in potential probiotic lactic acid bacteria of fermented foods and human origin from Nigeria. BMC Microbiol 23:142. https://doi.org/10.1186/s12866-023-02883-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ozturk S, Erbas G (2017) Investigation of antibiotic sensivity, isolation and identification of Gardnerella vaginalis collected from Ketem/Aydın Province. Kocatepe Med J 18:61–66

    Google Scholar 

  50. Devi S, Kiesewalter HT, Kovács R, Frisvad JC, Weber T, Larsen TO, Kovács ÁT, Ding L (2019) Depiction of secondary metabolites and antifungal activity of Bacillus velezensis DTU001. Synth Syst Biotechnol 4(3):142–149. https://doi.org/10.1016/j.synbio.2019.08.002

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: GS, HGD, MSB; Sample collection: HGD and MSB; Investigation: GS and HGD; Data analysis: GS and HGD; Writing—first draft: GS and HGD; Supervision: MSB; Review and editing: MSB. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Gulcan Sahal.

Ethics declarations

Conflict of interest

The authors declare that they have no relevant financial or non-financial interests to disclose.

Ethical Approval

This study was approved by “Hacettepe University Ethics Committee” (GO19/507).

Informed Consent

The written informed consent was obtained from all individual participants in accordance with the principles of the declaration of Helsinki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahal, G., Donmez, H.G. & Beksac, M.S. Cervicovaginal Bacillus velezensis Isolate: A Potential Probiotic and an Antagonist Against Candida and Staphylococcus. Curr Microbiol 80, 332 (2023). https://doi.org/10.1007/s00284-023-03447-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03447-1

Navigation