Skip to main content
Log in

Pectobacterium jejuense sp. nov. Isolated from Cucumber Stem Tissue

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A single Pectobacterium-like strain named 13-115T was isolated from a specimen of diseased cucumber stem tissue collected on Jeju Island, South Korea. The strain presented a rod-like shape and was negative for Gram staining. When grown on R2A medium at 25 °C, strain 13-115T formed round, convex and white colonies. This strain showed growth at temperatures ranging from 10 to 30 °C and tolerated a pH range of 6–9. The strain could also tolerate NaCl concentrations up to 5%. Analysis of the 16S rRNA gene sequence revealed that strain 13-115T exhibited similarity of over 99% with Pectobacterium brasiliense, P. carotovorum, P. polaris, and P. parvum. By conducting multilocus sequence analyses using dnaX, leuS, and recA genes, a separate phylogenetic lineage was discovered between strain 13-115T and other members of the genus Pectobacterium. Moreover, the strain showed relatively low in silico DNA–DNA hybridization (<60.6%) and average nucleotide identity (ANI) (<94.9%) values with recognized Pectobacterium species. The isolate has a genome size of 5,069,478 bp and a genomic G + C content of 52.04 mol%. Major fatty acids identified in the strain included C16:0 (28.99%), summed feature 3 (C16:1 ω7c and/or C16:1 ω6c; 28.85%), and C18:1 ω7c (19.01%). Pathogenicity assay confirmed that the novel strain induced soft rot symptoms in cucumber plants and Koch’s postulates were fulfilled. Molecular analysis and phenotypic data indicated that strain 13-115T could be classified as a new species within the Pectobacterium genus, which has been named Pectobacterium jejuense. The type strain is 13-115T (= KCTC 92800T = JCM 35940T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The 16S rRNA gene sequence of strain 13-115T has been deposited in NCBI GenBank and assigned accession number LC742805. In addition, the whole-genome sequence of strain 13-115T has been deposited in GenBank under accession number JAPQKX000000000. Access to the datasets utilized or examined during the present study can be obtained from the corresponding author upon a reasonable request.

Code Availability

Not applicable.

References

  1. Voronina MV, Lukianova AA, Shneider MM, Korzhenkov AA, Toschakov SV et al (2021) First report of Pectobacterium polaris causing soft rot and blackleg of potato in Russia. Plant Dis 105:1851. https://doi.org/10.1094/pdis-09-20-1864-pdn

    Article  Google Scholar 

  2. Joshi JR, Brown K, Charkowski AO, Heuberger AL (2022) Protease inhibitors from Solanum chacoense inhibit Pectobacterium virulence by reducing bacterial protease activity and motility. Mol Plant Microbe Interact 35:825–834. https://doi.org/10.1094/MPMI-04-22-0072-R

    Article  CAS  PubMed  Google Scholar 

  3. Park KT, Hong SM, Back CG, Kim SY, Lee SY et al (2022) First report of Pectobacterium brasiliense causing soft rot on graft cactus in Korea. Res Plant Dis 28:172–178. https://doi.org/10.5423/rpd.2022.28.3.172

    Article  CAS  Google Scholar 

  4. Ma B, Hibbing ME, Kim HS, Reedy RM, Yedidia I et al (2007) Host range and molecular phylogenies of the soft rot enterobacterial genera Pectobacterium and dickeya. Phytopathology 97:1150–1163. https://doi.org/10.1094/phyto-97-9-1150

    Article  PubMed  Google Scholar 

  5. Hugouvieux-Cotte-Pattat N, Condemine G, Shevchik VE (2014) Bacterial pectate lyases, structural and functional diversity. Environ Microbiol Rep 6:427–440. https://doi.org/10.1111/1758-2229.12166

    Article  CAS  PubMed  Google Scholar 

  6. Maung CEH, Choub V, Cho JY, Kim KY (2022) Control of the bacterial soft rot pathogen, Pectobacterium carotovorum by Bacillus velezensis CE 100 in cucumber. Microb Pathog 173:105807. https://doi.org/10.1016/j.micpath.2022.105807

    Article  CAS  Google Scholar 

  7. Zhang Y, Fan Q, Loria R (2016) A re-evaluation of the taxonomy of phytopathogenic genera Dickeya and Pectobacterium using whole-genome sequencing data. Syst Appl Microbiol 39:252–259. https://doi.org/10.1016/j.syapm.2016.04.001

    Article  CAS  PubMed  Google Scholar 

  8. Arif M, Czajkowski R, Chapman TA (2022) Editorial: genome-wide analyses of Pectobacterium and Dickeya species. Front Plant Sci 13:855262–855262. https://doi.org/10.3389/fpls.2022.855262

    Article  PubMed  PubMed Central  Google Scholar 

  9. Portier P, Pédron J, Taghouti G, Fischer-Le Saux M, Caullireau E et al (2019) Elevation of Pectobacterium carotovorum subsp. odoriferum to species level as Pectobacterium odoriferum sp. nov., proposal of Pectobacterium brasiliense sp. nov. and Pectobacterium actinidiae sp. nov., emended description of Pectobacterium carotovorum and description of Pectobacterium versatile sp. nov., isolated from streams and symptoms on diverse plants. Int J Syst Evol Microbiol 69:3207–3216. https://doi.org/10.1099/ijsem.0.003611

    Article  CAS  PubMed  Google Scholar 

  10. Pédron J, Bertrand C, Taghouti G, Portier P, Barny MA (2019) Pectobacterium aquaticum sp. nov., isolated from waterways. Int J Syst Evol Microbiol 69:745–751. https://doi.org/10.1099/ijsem.0.003229

    Article  CAS  PubMed  Google Scholar 

  11. Nabhan S, de Boer SH, Maiss E, Wydra K (2013) Pectobacterium aroidearum sp. nov., a soft rot pathogen with preference for monocotyledonous plants. Int J Syst Evol Microbiol 63:2520–2525. https://doi.org/10.1099/ijs.0.046011-0

    Article  CAS  PubMed  Google Scholar 

  12. Gardan L, Gouy C, Christen R, Samson R (2003) Elevation of three subspecies of Pectobacterium carotovorum to species level: Pectobacterium atrosepticum sp. nov., Pectobacterium betavasculorum sp. nov. and Pectobacterium wasabiae sp. nov. Int J Syst Evol Microbiol 53:381–391. https://doi.org/10.1099/ijs.0.02423-0

    Article  CAS  PubMed  Google Scholar 

  13. Hauben L, Moore ERB, Vauterin L, Steenackers M, Mergaert J et al (1998) Phylogenetic position of phytopathogens within the Enterobacteriaceae. Syst Appl Microbiol 21:384–397. https://doi.org/10.1016/s0723-2020(98)80048-9

    Article  CAS  PubMed  Google Scholar 

  14. Alcorn SM, Orum TV, Steigerwalt AG, Foster JL, Fogleman JC et al (1991) Taxonomy and pathogenicity of Erwinia cacticida sp. nov. Int J Syst Bacteriol 41:197–212. https://doi.org/10.1099/00207713-41-2-197

    Article  CAS  PubMed  Google Scholar 

  15. Gallois A, Samson R, Ageron E, Grimont PAD (1992) Erwinia carotovora subsp. odorifera subsp. nov., associated with odorous soft rot of chicory (Cichorium intybus L.). Int J Syst Evol Microbiol 42:582–588. https://doi.org/10.1099/00207713-42-4-582

    Article  Google Scholar 

  16. Zhou J, Hu M, Hu A, Li C, Ren X et al (2022) Isolation and genome analysis of Pectobacterium colocasium sp. nov. and Pectobacterium aroidearum, two new pathogens of taro. Front Plant Sci 13:852750. https://doi.org/10.3389/fpls.2022.852750

    Article  PubMed  PubMed Central  Google Scholar 

  17. Oulghazi S, Cigna J, Lau YY, Moumni M, Chan KG et al (2019) Transfer of the waterfall source isolate Pectobacterium carotovorum M022 to Pectobacterium fontis sp. nov., a deep-branching species within the genus Pectobacterium. Int J Syst Evol Microbiol 69:470–475. https://doi.org/10.1099/ijsem.0.003180

    Article  CAS  PubMed  Google Scholar 

  18. Khayi S, Cigna J, Chong TM, Quêtu-Laurent A, Chan KG et al (2016) Transfer of the potato plant isolates of Pectobacterium wasabiae to Pectobacterium parmentieri sp. nov. Int J Syst Evol Microbiol 66:5379–5383. https://doi.org/10.1099/ijsem.0.001524

    Article  CAS  PubMed  Google Scholar 

  19. Pasanen M, Waleron M, Schott T, Cleenwerck I, Misztak A et al (2020) Pectobacterium parvum sp. nov., having a Salmonella SPI-1-like type III secretion system and low virulence. Int J Syst Evol Microbiol 70:2440–2448. https://doi.org/10.1099/ijsem.0.004057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Waleron M, Misztak A, Waleron M, Franczuk M, Wielgomas B et al (2018) Transfer of Pectobacterium carotovorum subsp. carotovorum strains isolated from potatoes grown at high altitudes to Pectobacterium peruviense sp. nov. Syst Appl Microbiol 41:85–93. https://doi.org/10.1016/j.syapm.2017.11.005

    Article  PubMed  Google Scholar 

  21. Dees MW, Lysøe E, Rossmann S, Perminow J, Brurberg MB (2017) Pectobacterium polaris sp. nov., isolated from potato (Solanum tuberosum). Int J Syst Evol Microbiol 67:5222–5229. https://doi.org/10.1099/ijsem.0.002448

    Article  CAS  PubMed  Google Scholar 

  22. Sarfraz S, Riaz K, Oulghazi S, Cigna J, Sahi ST et al (2018) Pectobacterium punjabense sp. nov., isolated from blackleg symptoms of potato plants in Pakistan. Int J Syst Evol Microbiol 68:3551–3556. https://doi.org/10.1099/ijsem.0.003029

    Article  CAS  PubMed  Google Scholar 

  23. Moussa HB, Pédron J, Bertrand C, Hecquet A, Barny MA (2021) Pectobacterium quasiaquaticum sp. nov., isolated from waterways. Int J Syst Evol Microbiol. https://doi.org/10.1099/ijsem.0.005042

    Article  PubMed  PubMed Central  Google Scholar 

  24. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington DC, pp 607–654

    Google Scholar 

  25. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol Res 173:697–703. https://doi.org/10.1128/jb.173.2.697-703.1991

    Article  CAS  Google Scholar 

  26. Portier P, Pédron J, Taghouti G, Dutrieux C, Barny MA (2020) Updated taxonomy of Pectobacterium genus in the CIRM-CFBP bacterial collection: when newly described species reveal “old” endemic population. Microorganisms 8:1441. https://doi.org/10.3390/microorganisms8091441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sławiak M, Łojkowska E, van der Wolf JM (2009) First report of bacterial soft rot on potato caused by Dickeya sp. (syn. Erwinia chrysanthemi) in Poland. Plant Pathol 58:794. https://doi.org/10.1111/j.1365-3059.2009.02028.x

    Article  Google Scholar 

  28. Waleron M, Waleron K, Podhajska AJ, Łojkowska E (2002) Genotyping of bacteria belonging to the former Erwinia genus by PCR-RFLP analysis of a recA gene fragment. Microbiology 148:583–595. https://doi.org/10.1099/00221287-148-2-583

    Article  CAS  PubMed  Google Scholar 

  29. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376. https://doi.org/10.1007/bf01734359

    Article  CAS  PubMed  Google Scholar 

  31. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. https://doi.org/10.1007/BF01731581

    Article  CAS  PubMed  Google Scholar 

  32. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids, MIDI technical note 101 Netwark. MIDI Inc, Okaland

    Google Scholar 

  33. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75. https://doi.org/10.1186/1471-2164-9-75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V et al (2018) RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 46:D851–D860. https://doi.org/10.1093/nar/gkx1068

    Article  CAS  PubMed  Google Scholar 

  36. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44:6614–6624. https://doi.org/10.1093/nar/gkw569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lagesen K, Hallin P, Rødland EA, Stærfeldt HH, Rognes T et al (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108. https://doi.org/10.1093/nar/gkm160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lowe TM, Chan PP (2016) tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 44:W54–W57. https://doi.org/10.1093/nar/gkw413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Meier-Kolthoff JP, Göker M (2019) TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 10:2182. https://doi.org/10.1038/s41467-019-10210-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lefort V, Desper R, Gascuel O (2015) FastME 2.0: a comprehensive, accurate and fast distance-based phylogeny inference program. Mol Biol Evol 32:2798–2800. https://doi.org/10.1093/molbev/msv150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jones LR (1901) Bacillus carotovorus n. sp., die Ursache einer weichen Fäulnis der Möhre. Zentrabl Bakteriol Parasitenk Infektionskr Hyg Abt II 7:12–21

    CAS  Google Scholar 

  42. Duarte V, De Boer SH, Ward LJ, de Oliveira AMR (2004) Characterization of atypical Erwinia carotovora strains causing blackleg of potato in Brazil. J Appl Microbiol 96:535–545. https://doi.org/10.1111/j.1365-2672.2004.02173.x

    Article  CAS  PubMed  Google Scholar 

  43. Nabhan S, de Boer SH, Maiss E, Wydra K (2012) Taxonomic relatedness between Pectobacterium carotovorum subsp. carotovorum, Pectobacterium carotovorum subsp. odoriferum and Pectobacterium carotovorum subsp. brasiliense subsp. nov. J Appl Microbiol 113:904–913. https://doi.org/10.1111/j.1365-2672.2012.05383.x

    Article  CAS  PubMed  Google Scholar 

  44. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:1–14. https://doi.org/10.1186/1471-2105-14-60

    Article  Google Scholar 

  45. Ten LN, Li W, Hong SM, Kim MK, Lee SY et al (2022) Pedobacter segetis sp. nov., a novel bacterium isolated from soil. Curr Microbiol 79:71. https://doi.org/10.1007/s00284-021-02753-w

    Article  CAS  PubMed  Google Scholar 

  46. Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 106:19126–19131. https://doi.org/10.1073/pnas.0906412106

    Article  PubMed  PubMed Central  Google Scholar 

  47. Madhaiyan M, Sriram S, Kiruba N, Saravanan VS (2022) Genome-based reclassification of Paraburkholderia insulsa as a later heterotypic synonym of Paraburkholderia fungorum and proposal of Paraburkholderia terrae subsp. terrae subsp. nov. and Paraburkholderia terrae subsp. steynii subsp. nov. Curr Microbiol 79:358. https://doi.org/10.1007/s00284-022-03058-2

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This project was supported by the Animal and Plant Quarantine Agency (PQ20211B003), the Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design of the study. SMH conducted the experiments and wrote the manuscript, LNT analyzed the data, wrote and modified the manuscript, KTP organized data curation and conducted methodology, CGB provided resources, MW carried out Biolog GEN III experiment, IKK provided resources, SYL analyzed sequence data and reviewed the manuscript, HYJ designed, planned the study and reviewed the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Hee-Young Jung.

Ethics declarations

Conflict of interest

No conflict of interest is declared.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 299 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, SM., Ten, L.N., Park, KT. et al. Pectobacterium jejuense sp. nov. Isolated from Cucumber Stem Tissue. Curr Microbiol 80, 308 (2023). https://doi.org/10.1007/s00284-023-03419-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03419-5

Navigation