Skip to main content
Log in

Trichoderma Species from Soil of Pernambuco State, Brazil

  • Short Communication
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Trichoderma is an important fungal genus, known mainly for its potential for the biological control of phytopathogens. Accurate identification of these fungi is essential for research and applications involving them, to be addressed correctly. The objectives of this study were to isolate, identify, and report the species richness of Trichoderma species that occur in the soil of different regions of Pernambuco, Brazil. DNA sequences of portions of the translation elongation factor 1-α (TEF1) gene region were generated for 56 isolates of Trichoderma, obtained from the Zona da Mata, Agreste, and Sertão regions of Pernambuco. According to the phylogenetic analysis based on these sequences, these fungi belong to two Sections—Trichoderma (35 isolates) and Pachybasidium (21 isolates). These fungi have been resolved in nine species, including Trichoderma afroharzianum, Trichoderma asperelloides, Trichoderma asperellum, Trichoderma koningiopsis, and five possible new species to be confirmed in further studies. This study shows that the soils of Pernambuco host a diversity of Trichoderma species and consequently of biological resources with potential for application in agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3

References

  1. Zafra G, Cortés-Espinosa DV (2015) Biodegradation of polycyclic aromatic hydrocarbons by Trichoderma species: a mini review. Environ Sci Pollut Res 22:19426–19433. https://doi.org/10.1007/s11356-015-5602-4

    Article  CAS  Google Scholar 

  2. Harman GE (2000) Myths and dogmas of biocontrol. Changes in perceptions derived from research on Trichoderma harzianum T22. Plant Dis 84:377–393. https://doi.org/10.1094/PDIS.2000.84.4.377

    Article  CAS  PubMed  Google Scholar 

  3. Lucon CMM, Koike CM, Ishikawa AI et al (2009) Bioprospecção de isolados de Trichoderma spp. para o controle de Rhizoctonia solani na produção de mudas de pepino. Pesq Agrop Brasileira 4:225–232. https://doi.org/10.1590/S0100-204X2009000300002

    Article  Google Scholar 

  4. Cavero PAS, Hanada RE, Gasparotto LN et al (2015) (2015) Biological control of banana black Sigatoka disease with Trichoderma. Ciência Rural 45:951–957. https://doi.org/10.1590/0103-8478cr20140436

    Article  Google Scholar 

  5. Haddad PE, Leite LG, Lucon CMM et al (2017) Selection of Trichoderma spp. strains for the control of Sclerotinia sclerotiorum in soybean. Pesq Agrop Brasileira 52:1140–1148. https://doi.org/10.1590/S0100-204X2017001200002

    Article  Google Scholar 

  6. Singh A et al (2018) Review on plant-Trichoderma-pathogen interaction. Int J Curr Microbiol App Sci 7:2382–2397. https://doi.org/10.20546/ijcmas.2018.702.291

    Article  CAS  Google Scholar 

  7. Błaszczyk L, Popiel D, Chełkowski J et al (2011) Species diversity of Trichoderma in Poland. J Appl Genetics 52:233–243. https://doi.org/10.1007/s13353-011-0039-z

    Article  Google Scholar 

  8. Rifai MA (1969) A revision of the genus Trichoderma. Mycol Pap 116:1–56

    Google Scholar 

  9. Bissett J (1991) A revision of the genus Trichoderma. II. Intrageneric classification. Canad J Bot 60:2357–2372

    Article  Google Scholar 

  10. Samuels GJ (1996) Trichoderma: a review of biology and systematics of the genus. Mycol Res 100:923–935

    Article  Google Scholar 

  11. Samuels GJ (2006) Trichoderma, systematics, the sexual state, and ecology. Phytopathology 96:195–206. https://doi.org/10.1094/PHYTO-96-0195

    Article  CAS  PubMed  Google Scholar 

  12. Hoyos-Carvajal L, Bissett J (2011) Biodiversity of Trichoderma in Neotropics. In: Grillo O, Venora G (eds) The Dynamical processes of biodiversity—Case studies of evolution and spatial distribution. InTech, Rijeka, pp 303–320

    Google Scholar 

  13. Gams W, Bissett J (2002) Morphology and identification of Trichoderma. In: Kubicek CP, Harman GE (eds) Trichoderma and Gliocladium: Basic biology, taxonomy and genetics. Taylor & Francis, London, pp 3–3

    Google Scholar 

  14. Cai F, Druzhinina IS (2021) In honor of John Bissett: authoritative guidelines on molecular identification of Trichoderma. Fungal Divers 107:1–69. https://doi.org/10.1007/s13225-020-00464-4

    Article  CAS  Google Scholar 

  15. Yu ZF, Qiao M, Zhang Y et al (2007) Two new species of Trichoderma from Yunnan, China. Antonie Van Leeuwenhoek 92:101–108. https://doi.org/10.1007/s10482-006-9140-4

    Article  CAS  PubMed  Google Scholar 

  16. Jaklitsch WM, Voglmayr H (2015) Biodiversity of Trichoderma (Hypocreaceae) in Southern Europe and Macaronesia. Stud Mycol 80:1–87. https://doi.org/10.1016/j.simyco.2014.11.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Oliveira LG, Kettner MG, Lima MLS et al (2021) Potencial de biocontrole Trichoderma spp contra Macrophomina phaseolina de feijão-caupi. Pesqui Agropecu Pernamb 26(2):e2512262021. https://doi.org/10.12661/pap.2021.003

    Article  Google Scholar 

  18. Chen K, Zhuang WY (2017) Discovery from a large-scaled survey of Trichoderma in soil of China. Sci Rep 7:9090. https://doi.org/10.1038/s41598-017-07807-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jaklitsch WM (2009) European species of Hypocrea Part I, The green-spored species. Stud Mycol 63:1–91. https://doi.org/10.3114/sim.2009.63.01

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hawksworth DL, Lücking R (2017) Fungal diversity revisited: 2.2 to 3.8 Million Species. Microbiol Spectr 5:1–17. https://doi.org/10.1128/microbiolspec.FUNK-0052-2016

    Article  Google Scholar 

  21. Oliveira LG, Cavalcanti MAQ, Fernandes MJS et al (2013) Diversity of filamentous fungi isolated from the soil in the semiarid area, Pernambuco, Brazil. J Arid Environ 95:49–54. https://doi.org/10.1016/j.jaridenv.2013.03.007

    Article  Google Scholar 

  22. Cavalcanti MAQ, Oliveira LG, Fernandes MJS et al (2006) Filamentous fungi isolated from soil in counties from the Xingó region. Brazil Acta bot bras 20(4):831–837. https://doi.org/10.1590/S0102-33062006000400008

    Article  Google Scholar 

  23. Mafra RC. (1981). Agricultura de sequeiro no trópico semi­árido: um delineamento de compromisso para a pesquisa. Recife, Secretaria de Agricultura de Pernambuco/ IPA. (Portuguese).

  24. Lima DA (2007) Estudos fitogeográficos de Pernambuco. An da Acad Pernambucana de Ciência Agronômica 4:243–274

    Google Scholar 

  25. Sampaio EVSB (1995) Overview of the Brazilian caatinga. In: Bullock SH, Mooney HA, Medina E (eds) Seasonally Dry Tropical Forests. Oxford University Press, Cambridge, pp 35–63

    Chapter  Google Scholar 

  26. Drumond MA, Kill LHP, Lima PCF et al (2004) Strategies for the sustainable use of Caatinga biodiversity. In: Silva JMC, Tabarelli M, Fonseca MT et al (eds) Biodiversity of the Caatinga: priority areas and actions for conservation. Ministério do Meio ambiente, Brasília, pp 329–340

    Google Scholar 

  27. Costa AF, Souza MCM, Canuto VTB et al (2013) Miranda IPA 207, new Cowpea Cultivar for Northeast Brazil. Pesq Agropec Pernamb 18(1):39–43. https://doi.org/10.12661/pap.2013.008

    Article  Google Scholar 

  28. Clark FE (1965) Agar-plate method for total microbial count. In: Black CA, Evans DD, White JL et al (eds) Methods of soil analysis. Part 2. Chemical and microbial properties. Madson Inc, New York, pp 1460–1466

    Google Scholar 

  29. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91(3):553–556. https://doi.org/10.1080/00275514.1999.12061051

    Article  CAS  Google Scholar 

  31. Jaklitsch WM, Komon M, Kubicek CP et al (2005) Hypocrea voglmayrii sp. nov. from the Austrian Alps represents a new phylogenetic clade Hypocrea/Trichoderma. Mycologia 97(6):1365378. https://doi.org/10.1080/1557253611832743

    Article  Google Scholar 

  32. Sanger F, Nicklen S et al (1977) DNA sequencing with chain-terminating inibitors. Proc Natl Acad Sci USA 74(12):5463–5467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kumar S, Stecher G et al (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Miller MA, Pfeiffer W, et al (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), pp. 1–8. https://doi.org/10.1109/GCE.2010.5676129.

  36. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. https://doi.org/10.1093/bioinformatics/btu033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary biology centre. Uppsala Univ Bioinform 24:581–583

    Google Scholar 

  38. Rambaut A (2016) FigTree 1.4.3. Accessed 15 Jan 2022 http://tree.bio.ed.ac.uk/software/figtree/.

  39. Druzhinina IS, Kubicek CP (2005) Species concepts and biodiversity in Trichoderma and Hypocrea: from aggregate species to species clusters. J Zhejiang Univ Sci 6:100–112. https://doi.org/10.1631/jzus.2005.B0100

    Article  Google Scholar 

  40. Vizcaino JA, Sanz L, Basilio A et al (2005) Screening of antimicrobial activities in Trichoderma isolates representing three Trichoderma sections. Mycol Res 109(12):1397–1406. https://doi.org/10.1017/S0953756205003898

    Article  CAS  PubMed  Google Scholar 

  41. Lieckfeldt E, Kuhls K, Muthumeenakshi M (1998) Molecular taxonomy of Trichoderma and Gliocladium and their teleomorphs. In: Kubicek CP, Harman GE (eds) Trichoderma & Gliocladium. Basic biology, taxonomy and genetics. Taylor & Francis, London, pp 35–74

    Google Scholar 

  42. Bae S-J, Mohanta TK, Chung JY et al (2016) Trichoderma metabolites as biological control agents against Phytophthora pathogens. Biol Control 92:128–138. https://doi.org/10.1016/j.biocontrol.2015.10.005

    Article  CAS  Google Scholar 

  43. Garnica-Vergara A, Barrera-Ortiz S, Muñoz-Parra E et al (2016) The volatile 6-pentyl-2 H -pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ethylene insensitive 2 functioning. New Phytol 209:1496–1512. https://doi.org/10.1111/nph.13725

    Article  CAS  PubMed  Google Scholar 

  44. Kubicek CP, Steindorff AS, Chenthamara K et al (2019) Evolution and comparative genomics of the most common Trichoderma species. BMC Genom 20:485. https://doi.org/10.1186/s12864-019-5680-7

    Article  CAS  Google Scholar 

  45. Carvalho DDC, Inglis PW, Ávila ZR et al (2018) Morphological characteristics and genetic variability of Trichoderma spp. from conventional cotton crop soils in Federal District Brazil. J Agric Sci 10(8):146–155. https://doi.org/10.5539/jas.v10n8p146

    Article  Google Scholar 

Download references

Acknowledgements

The research is financed by “Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco” (FACEPE) (grant BCT-0098-5.01/16) and National Council for Scientific and Technological Development (CNPq) (grant DCR-0007-5.01/16).

Funding

The funding was received from FACEPE, BCT-0098-5.01/16, Luciana Gonçalves de Oliveira,CNPq, DCR-0007-5.01/16, Luciana Gonçalves de Oliveira.

Author information

Authors and Affiliations

Authors

Contributions

LGO and AFC implemented the Project; LGO, MGK, and MLSL isolated the Trichoderma of soil; LGO, MPCL and ACdSS performed the DNA extraction; LGO, ACdSS and MPCL analyzed the results of molecular data; LGO and ACdSS wrote the paper. All the authors reviewed the final version of the paper.

Corresponding author

Correspondence to Luciana G. Oliveira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicting interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, L.G., Kettner, M.G., Lima, M.L.S. et al. Trichoderma Species from Soil of Pernambuco State, Brazil. Curr Microbiol 80, 289 (2023). https://doi.org/10.1007/s00284-023-03401-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03401-1

Navigation