Skip to main content
Log in

Antimicrobial Susceptibility of Staphylococcus aureus Strains and Effect of Phloretin on Biofilm Formation

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) are known to be responsible of various infections, including biofilm-associated diseases. The aim of this study was to analyze 19 strains of S. aureus from orthopedic sites in terms of phenotypic antimicrobial susceptibility against 13 selected antibiotics, slime/biofilm formation, molecular analysis of specific antibiotic resistance genes (mecA, cfr, rpoB), and biofilm-associated genes (icaADBC operon). Furthermore, the effect of phloretin on the production of biofilm was evaluated on 8 chosen isolates. The susceptibility test confirmed almost all strains were resistant to cefoxitin and oxacillin. Most strains possess the mecA, whereas none of the strains had the cfr gene. Four strains (1, 7, 10, and 24) presented single-nucleotide polymorphisms (SNPs) in rpoB, which confer rifampicin resistance. IcaD was detected in all tested strains, whereas icaR was only found in two strains (24 and 30). Phloretin had a dose-dependent effect on biofilm production. Specifically, 0.5 × MIC determined biofilm inhibition in 5 out of 8 strains (8, 24, 25, 27, 30), whereas an increase in biofilm production was detected with phloretin at the 0.125 × MIC across all tested strains. These data are useful to potentially develop novel compounds against antibiotic-resistant S. aureus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data available on request from the authors.

References

  1. Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG (2015) Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 3:603–661

    Article  Google Scholar 

  2. Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol 15:167–193

    Article  CAS  Google Scholar 

  3. Keren I, Kaldalu N, Spoering A, Wang Y, Lewis K (2004) Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett 230:13–18

    Article  CAS  PubMed  Google Scholar 

  4. Lewis K (2001) Riddle of biofilm resistance. Antimicrob Agents Chemother 45:999–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xu Z, Xie L, Soteyome T, Peters BM, Shirtliff ME, LiuJ HJM (2019) Polymicrobial interaction and biofilms between Staphylococcus aureus and Pseudomonas aeruginosa: an underestimated concern in food safety. Curr Opin Food Sci 26:57–64

    Article  Google Scholar 

  6. Arciola CR, Campoccia D, Ravaioli S, Montanaro L (2015) Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Front Cell Infect Microbiol 5:7

    Article  PubMed  PubMed Central  Google Scholar 

  7. You Y, Xue T, Cao L, Zao L, Sun H, Sun B (2014) Staphylococcus aureus glucose-induced biofilm accessory proteins, GbaAB, influence biofilm formation in a PIA-dependent manner. Int J Mol Microbiol 304:603–612

    Article  CAS  Google Scholar 

  8. Sionov RV, Steinberg D (2022) Targeting the holy triangle of quorum sensing, biofilm formation and antibiotic resistance in pathogenic bacteria. Microorganisms 10(6):1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lopes LAA, Dos Santos Rodrigues JB, Magnani M, de Souza EL, de Siqueira-Júnior JP (2017) Inhibitory effects of flavonoids on biofilm formation by Staphylococcus aureus that overexpresses efflux protein genes. Microb Pathog 107:193–197

    Article  CAS  PubMed  Google Scholar 

  10. Gao L, Tang Z, Li T, Wang J (2021) Combination of kaempferol and azithromycin attenuates Staphylococcus aureus-induced osteomyelitis via anti-biofilm effects and by inhibiting the phosphorylation of ERK1/2 and SAPK. Pathog Dis 79:ftab048

    Article  CAS  PubMed  Google Scholar 

  11. Barreca D, Bellocco E, Caristi C, Leuzzi U, Gattuso G (2011) Kumquat (Fortunella japonica Swingle) juice: flavonoid distribution and antioxidant properties. Food Res Int 44:2190–2197

    Article  CAS  Google Scholar 

  12. Barreca D, Bellocco E, Laganà G, Ginestra G, Bisignano C (2014) Biochemical and antimicrobial activity of phloretin and its glycosilated derivatives present in apple and kumquat. Food Chem 160:292–297

    Article  CAS  PubMed  Google Scholar 

  13. Rezk BM, Haenen GRMM, Van der Vijgh WJF, Bast A (2002) The antioxidant activity of phloretin, the disclosure of a new antioxidant pharmacophore in flavonoids. Biochem Biophys Res Commun 295:9–13

    Article  CAS  PubMed  Google Scholar 

  14. Shuai-Cheng W, Ben-Dong F, Xiu-Ling C, Jian-Qing S, Yun-Xing F, Zhen-Qiang C, Dao-Xiu X, Zong-Mei W (2016) Subinhibitory concentrations of phloretin repressthe virulence of Salmonella typhimurium and protect against Salmonella typhimurium infection. Ant Van Leeuwenhoek 109(11):1503–1512

    Article  Google Scholar 

  15. Adil M, Baig MH, Rupasinghe HPV (2019) Impact of citral and phloretin, alone and in combination, on major virulence traits of Streptococcus pyogenes. Molecules 24:4237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. La Camera E, Bisignano C, Crisafi G, Smeriglio A, Denaro M, Trombetta D, Mandalari G (2018) Biochemical characterization of clinical strains of Staphylococcus spp. and their sensitivity to polyphenols-rich extracts from Pistachio (Pistacia vera L.). Pathogens 7:82

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bisignano C, Ginestra G, Smeriglio A, La Camera E, Crisafi G, Franchina FA, Tranchida PQ, Alibrandi A, Trombetta D, Mondello L, Mandalari G (2019) Study of the lipid profile of ATCC and clinical strains of Staphylococcus aureus in relation to their antibiotic resistance. Molecules 24:1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. EUCAST. The European committee on antimicrobial susceptibility Testing. Reference. Breakpoint tables for interpretation of MICs and zone diameters. Version 9.0. 1 January 2022. Available online: http://www.eucast.org. Accessed 24 Mar 2021

  19. Nostro A, Guerrini A, Marino A, Tacchini M, Di Giulio M, Grandini A, Akin M, Cellini L, Bisignano G, Saraçoğlu HT (2016) In vitro activity of plant extracts against biofilm-producing food-related bacteria. Int J Food Microbiol 238:33–39

    Article  CAS  PubMed  Google Scholar 

  20. Clinical and Laboratory Standards Institute (CLSI) (2018) Performance Standards for Antimicrobial Susceptibility Testing. CLSI Approved Standard M100-S15. Clinical and Laboratory Standards Institute, Wayne.

  21. Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME (2011) Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence 2:445–459

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic Acids Techniques in Bacterial Systematics. Wiley, Chichester, pp 115–147

    Google Scholar 

  23. Osman K, Badr J, Al-Maary KS, Moussa IM, Hessain AM, Girah ZM, Abo-Shama UH, Orabi A, Saad A (2016) Prevalence of the antibiotic resistance genes in coagulase-positive-and negative-Staphylococcus in chicken meat retailed to consumers. Front Microbiol 7:1846

    Article  PubMed  PubMed Central  Google Scholar 

  24. Aubry-Damon H, Soussy CJ, Courvalin P (1998) Characterization of mutations in the rpoB gene that confer rifampin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 42:2590–2594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jansen van Rensburg MJ, Whitelaw AC, Elisha BG (2012) Genetic basis of rifampicin resistance in methicillin-resistant Staphylococcus aureus suggests clonal expansion in hospitals in Cape Town. South Africa BMC Microb 12:46

    Article  CAS  Google Scholar 

  26. Esteban J, Molina-Manso D, Spiliopoulou I, Cordero-Ampuero J, Fernández-Roblas R, Foka A, Gómez-Barrena E (2010) Biofilm development by clinical isolates of Staphylococcus spp. from retrieved orthopedic prostheses. Acta Orthop 81:674–679

    Article  PubMed  PubMed Central  Google Scholar 

  27. Vestergaard M, Frees D, Ingmer H (2019) Antibiotic resistance and the MRSA problem. Microbiol Spec. https://doi.org/10.1128/microbiolspec.GPP3-0057-2018

    Article  Google Scholar 

  28. Skov R, Larsen AR, Kearns A, Holmes M, Teale C, Edwards G, Hill R (2014) Phenotypic detection of mecC-MRSA: cefoxitin is more reliable than oxacillin. J Antimicrob Chemother 69:133–5

    Article  CAS  PubMed  Google Scholar 

  29. O’Neill AJ, Huovinen T, Fishwick CWG, Chopra I (2006) Molecular genetic and structural modeling studies of Staphylococcus aureus RNA polymerase and the fitness of rifampin resistance genotypes in relation to clinical prevalence. Antimicrob Agents Chemother 50(1):298–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Guérillot R, Gonçalves da Silva A, Monk I, Giulieri S, Tomita T, Alison E, Porter J, Pidot S (2018) Convergent evolution driven by rifampin exacerbates the global burden of drug-resistant Staphylococcus aureus. mSphere 3(1):e00550-17

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wichelhaus T, Schäfer V, Brade V, Böddinghaus B (2001) Differential effect of rpoB mutations on antibacterial activities of rifampicin and KRM-1648 against Staphylococcus aureus. J Ant Chemot 47(2):153–156

    CAS  Google Scholar 

  32. Wang C, Fang R, Zhou B, Tian X, Zhang X, Zheng X, Zhang S, Dong G, Cao J, Zhou T (2019) Evolution of resistance mechanisms and biological characteristics of rifampicin-resistant Staphylococcus aureus strains selected in vitro. BMC Microbiol 19(1):220

    Article  PubMed  PubMed Central  Google Scholar 

  33. Flemming HC, Wuertz S (2019) Bacteria andarchaea on Earth and their abundance in biofilms. Nature Rev Microbiol 17(4):247–260

    Article  CAS  Google Scholar 

  34. Anderson GG, O’Toole GA (2008) Innate and induced resistance mechanisms of bacterial biofilms. Curr Topics Microbiol and Immunol 322:85–105

    CAS  Google Scholar 

  35. Hall CW, Mah TF (2017) Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev 41(3):276–301

    Article  CAS  PubMed  Google Scholar 

  36. Wei LN, Shi CZ, Luo CX, Hu CY, Men YH (2020) Phloretin inhibits biofilm formation by affecting quorum sensing under different temperature. LWT-Food Sci Technol 131:109668

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

“Conceptualization, GM, AN, OR, and DB; methodology, AM, ELC, and AN; writing—review and editing, GM, AN, OR, and DB; funding acquisition, GM and OR. All authors have read and agreed to the published version of the manuscript.”

Corresponding authors

Correspondence to Giuseppina Mandalari or Orazio Romeo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandalari, G., Minuti, A., La Camera, E. et al. Antimicrobial Susceptibility of Staphylococcus aureus Strains and Effect of Phloretin on Biofilm Formation. Curr Microbiol 80, 303 (2023). https://doi.org/10.1007/s00284-023-03400-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03400-2

Navigation