Skip to main content
Log in

A transcriptional Regulator Gar Regulates the Growth and Virulence of Xanthomonas oryzae pv. oryzae

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Xanthomonas oryzae pv. oryzae (Xoo) is the causal agent of bacterial blight, one of the most devastating diseases of rice. Pathogenic bacteria possess numerous transcriptional regulators to participate in the regulation of cellular processes. Here, we identified a transcriptional regulator Gar (PXO_RS11965) that is involved in regulating the growth and virulence of Xoo. Notably, the knockout of gar in Xoo enhanced bacterial virulence to the host rice. RNA-sequencing analysis and quantitative β-glucuronidase (GUS) assay indicated that Gar positively regulates the expression of a σ54 factor rpoN2. Further experiments confirmed that overexpression of rpoN2 restored the phenotypic changes caused by gar deletion. Our research revealed that Gar influences bacterial growth and virulence by positively regulating the expression of rpoN2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated during this study are included in this article.

Code Availability

Not applicable.

References

  1. Leyns F, Cleene MD, Swings JG, Ley JD (1984) The host range of the genus Xanthomonas. Bot Rev 50:308–356. https://doi.org/10.1007/BF02862635

    Article  Google Scholar 

  2. Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow M, Verdier V, Beer SV, Machado MA, Toth I, Salmond G, Foster GD (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 13:614–629. https://doi.org/10.1111/j.1364-3703.2012.00804.x

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kou YJ, Wang SP (2013) Bacterial Blight Resistance in Rice. Translational genomics for crop breeding. Wiley, Hoboken, pp 11–30

    Chapter  Google Scholar 

  4. Jiang N, Yan J, Liang Y, Shi YL, He ZZ, Wu YT, Zeng Q, Liu XL, Peng JH (2020) Resistance genes and their interactions with bacterial Blight/Leaf streak pathogens (Xanthomonas oryzae) in Rice (Oryza sativa L)-an Updated Review. Rice. https://doi.org/10.1186/s12284-019-0358-y

    Article  PubMed  PubMed Central  Google Scholar 

  5. Niño-Liu DO, Ronald PC, Bogdanove AJ (2006) Xanthomonas oryzae pathovars: model pathogens of a model crop. Mol Plant Pathol 7:303–324. https://doi.org/10.1111/j.1364-3703.2006.00344.x

    Article  PubMed  Google Scholar 

  6. Duku C, Sparks AH, Zwart SJ (2015) Spatial modelling of rice yield losses in Tanzania due to bacterial leaf blight and leaf blast in a changing climate. Clim Change 135:569–583. https://doi.org/10.1007/s10584-015-1580-2

    Article  CAS  Google Scholar 

  7. Rai R, Ranjan M, Pradhan BB, Chatterjee S (2012) Atypical regulation of virulence-associated functions by a diffusible signal factor in Xanthomonas oryzae pv. oryzae. Mol Plant Microbe Interact 25:789–801. https://doi.org/10.1094/MPMI-11-11-0285-R

    Article  CAS  PubMed  Google Scholar 

  8. Kim SY, Kim JG, Lee BM, Cho JY (2009) Mutational analysis of the gum gene cluster required for xanthan biosynthesis in Xanthomonas oryzae pv oryzae. Biotechnol Lett 31:265–270. https://doi.org/10.1007/s10529-008-9858-3

    Article  CAS  PubMed  Google Scholar 

  9. Hickman JW, Tifrea DF, Harwood CS (2005) A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci USA 102:14422–14427. https://doi.org/10.1073/pnas.0507170102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Simm R, Morr M, Kader A, Nimtz M, Römling U (2004) GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53:1123–1134. https://doi.org/10.1111/j.1365-2958.2004.04206.x

    Article  CAS  PubMed  Google Scholar 

  11. Yang FH, Xue DR, Tian F, Hutchins W, Yang CH, He CY (2019) Identification of c-di-GMP Signaling Components in Xanthomonas oryzae and Their Orthologs in Xanthomonads Involved in Regulation of bacterial virulence expression. Front Microbiol 10:1402. https://doi.org/10.3389/fmicb.2019.01402

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hueck CJ (1998) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62:379–433. https://doi.org/10.1128/MMBR.62.2.379-433.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu LY, Li Y, Xu ZY, Chen H, Zhang JY, Manion B, Liu FQ, Zou LF, Fu ZQ, Chen GY (2022) The Xanthomonas type III effector XopAP prevents stomatal closure by interfering with vacuolar acidification. J Integr Plant Biol 64:1994–2008. https://doi.org/10.1111/jipb.13344

    Article  CAS  PubMed  Google Scholar 

  14. Leong JX, Raffeiner M, Spinti D, Langin G, Franz-Wachtel M, Guzman AR, Kim JG, Pandey P, Minina AE, Macek B, Hafrén A, Bozkurt TO, Mudgett MB, Börnke F, Hofius D, Üstün S (2022) A bacterial effector counteracts host autophagy by promoting degradation of an autophagy component. The EMBO J 41:e110352. https://doi.org/10.15252/embj.2021110352

    Article  CAS  PubMed  Google Scholar 

  15. Canonne J, Marino D, Jauneau A, Pouzet C, Brière C, Roby D, Rivas S (2011) The Xanthomonas type III effector XopD targets the Arabidopsis transcription factor MYB30 to suppress plant defense. Plant Cell 23:3498–3511. https://doi.org/10.1105/tpc.111.088815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Balderas-Martínez YI, Savageau M, Salgado H, Pérez-Rueda E, Morett E, Collado-Vides J (2013) Transcription factors in Escherichia coli prefer the holo conformation. PLoS One 8:e65723. https://doi.org/10.1371/journal.pone.0065723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Büttner D, Bonas U (2010) Regulation and secretion of Xanthomonas virulence factors. FEMS Microbiol Rev 34:107–133. https://doi.org/10.1111/j.1574-6976.2009.00192.x

    Article  CAS  PubMed  Google Scholar 

  18. Qian GL, Liu CH, Wu GC, Yin FQ, Zhao YC, Zhou YJ, Zhang YB, Song ZW, Fan JQ, Hu BS, Liu FQ (2013) AsnB, regulated by diffusible signal factor and global regulator Clp, is involved in aspartate metabolism, resistance to oxidative stress and virulence in Xanthomonas oryzae pv. oryzicola. Mol Plant Pathol 14:145–157. https://doi.org/10.1111/j.1364-3703.2012.00838.x

    Article  CAS  PubMed  Google Scholar 

  19. Huang DL, Tang DJ, Liao Q, Li HC, Chen Q, He YQ, Feng JX, Jiang BL, Lu GT, Chen BS, Tang JL (2008) The Zur of Xanthomonas campestris functions as a repressor and an activator of putative zinc homeostasis genes via recognizing two distinct sequences within its target promoters. Nucleic Acids Res 36:4295–4309. https://doi.org/10.1093/nar/gkn328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang DL, Tang DJ, Liao Q, Li XQ, He YQ, Feng JX, Jiang BL, Lu GT, Tang JL (2009) The Zur of Xanthomonas campestris is involved in hypersensitive response and positively regulates the expression of the hrp cluster via hrpX but not hrpG. Mol Plant Microbe Interact 22:321–329. https://doi.org/10.1094/MPMI-22-3-0321

    Article  CAS  PubMed  Google Scholar 

  21. Zheng DH, Yao XY, Duan M, Luo YF, Liu B, Qi PY, Sun M, Ruan LF (2016) Two overlapping two-component systems in Xanthomonas oryzae pv oryzae contribute to full fitness in rice by regulating virulence factors expression. Sci Rep 6:22768. https://doi.org/10.1038/srep22768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ray SK, Rajeshwari R, Sonti RV (2000) Mutants of Xanthomonas oryzae pv. oryzae deficient in general secretory pathway are virulence deficient and unable to secrete xylanase. Mol Plant Microbe Interact 13:394–401. https://doi.org/10.1094/MPMI.2000.13.4.394

    Article  CAS  PubMed  Google Scholar 

  23. Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11:R14. https://doi.org/10.1186/gb-2010-11-2-r14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907. https://doi.org/10.1002/j.1460-2075.1987.tb02730.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mittler R, Zandalinas SI, Fichman Y, Breusegem FV (2022) Reactive oxygen species signalling in plant stress responses. Nat Rev Mol Cell Biol 23:663–679. https://doi.org/10.1038/s41580-022-00499-2

    Article  CAS  PubMed  Google Scholar 

  26. Tao J, He CZ (2010) Response regulator, VemR, positively regulates the virulence and adaptation of Xanthomonas campestris pv. campestris. FEMS Microbiol Lett 304:20–28. https://doi.org/10.1111/j.1574-6968.2010.01892.x

    Article  CAS  PubMed  Google Scholar 

  27. Lin MJ, Wu KJ, Zhan ZH, Mi D, Xia YY, Niu XL, Feng SP, Chen YH, He CZ, Tao J, Li CX (2022) The RavA/VemR two-component system plays vital regulatory roles in the motility and virulence of Xanthomonas campestris. Mol Plant Pathol 23:355–369. https://doi.org/10.1111/mpp.13164

    Article  CAS  PubMed  Google Scholar 

  28. Yang TC, Leu YW, Chang-Chien HC, Hu RM (2009) Flagellar biogenesis of Xanthomonas campestris requires the alternative sigma factors RpoN2 and FliA and is temporally regulated by FlhA, FlhB, and FlgM. J Bacteriol 191:2266–2275. https://doi.org/10.1128/JB.01152-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dasgupta N, Ferrell EP, Kanack KJ, West SEH, Ramphal R (2002) fleQ, the gene encoding the major flagellar regulator of Pseudomonas aeruginosa, is sigma70 dependent and is downregulated by Vfr, a homolog of Escherichia coli cyclic AMP receptor protein. J Bacteriol 184:5240–5250. https://doi.org/10.1128/JB.184.19.5240-5250.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Balaban NQ (2011) Persistence: mechanisms for triggering and enhancing phenotypic variability. Curr Opin Genet Dev 21:768–775. https://doi.org/10.1016/j.gde.2011.10.001

    Article  CAS  PubMed  Google Scholar 

  31. VanBogelen RA, Olson ER, Wanner BL, Neidhardt FC (1996) Global analysis of proteins synthesized during phosphorus restriction in Escherichia coli. J Bacteriol 178:4344–4366. https://doi.org/10.1128/jb.178.15.4344-4366.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zheng DH, Xue BB, Shao YN, Yu HQ, Ruan LF (2018) Activation of PhoBR under phosphate-rich conditions reduces the virulence of Xanthomonas oryzae pv. oryzae. Mol Plant Pathol 19:2066–2076. https://doi.org/10.1111/mpp.12680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We especially thank Professor Gongyou Chen (Shanghai Jiao Tong University) for providing the pHG3 plasmid. This work was supported by the National Natural Science Foundation of China (31970123) and the sixth batch of flexible talent introduction projects of Tibet Agriculture & Animal Husbandry University (NYRXRC-2022-03).

Funding

Funding (the National Natural Science Foundation of China 31970123, the sixth batch of flexible talent introduction projects of Tibet Agriculture & Animal Husbandry University NYRXRC-2022-03). National Natural Science Foundation of China, 31970123, Lifang Ruan, the sixth batch of flexible talent introduction projects of Tibet Agriculture & Animal Husbandry University, NYRXRC-2022-03, Lifang Ruan

Author information

Authors and Affiliations

Authors

Contributions

HH contributed to the idea, performed the statistical analysis, and drafted the manuscript. HH, GY, WL, and SS performed the experiments. FC conducted the experiments in the revision. DH provided the experimental advice and was involved in manuscript editing. LF conceived the project, formulated the research plan, and supervised the study.

Corresponding author

Correspondence to Lifang Ruan.

Ethics declarations

Conflicts of interest

No conflict of interest to this work.

Ethical Approval

Normal scientific ethical practices have been respected in this study.

Consent to Participate

Not applicable.

Consent for Publication

All of the authors have approved the final version submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Fig. S1

Genetic validation of candidate target genes regulated by Gar. The initial OD600 of the bacterial cultures was 1.0. Aliquots (3 μL) of the diluted cultures were spotted onto NB plates and grown for 3 days. Supplementary file1 (TIFF 2569 kb)

Supplementary file2 (XLS 39 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Chen, F., Tang, G. et al. A transcriptional Regulator Gar Regulates the Growth and Virulence of Xanthomonas oryzae pv. oryzae. Curr Microbiol 80, 279 (2023). https://doi.org/10.1007/s00284-023-03396-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03396-9

Navigation