Skip to main content
Log in

Neobavaisoflavone Inhibits Biofilm Formation and α-Toxin Activity of Staphylococcus aureus

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Neobavaisoflavone had antimicrobial activities against Gram-positive multidrug-resistant (MDR) bacteria, but the effect of neobavaisoflavone on the virulence and biofilm formation of S. aureus has not been explored. The present study aimed to investigate the possible inhibitory effect of neobavaisoflavone on the biofilm formation and α-toxin activity of S. aureus. Neobavaisoflavone presented strong inhibitory effect on the biofilm formation and α-toxin activity of both methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) strains at 25 µM, but did not affect the growth of S. aureus planktonic cells. Genetic mutations were identified in four coding genes, including cell wall metabolism sensor histidine kinase walK, RNA polymerase sigma factor rpoD, tetR family transcriptional regulator, and a hypothetical protein. The mutation of WalK (K570E) protein was identified and verified in all the neobavaisoflavone-induced mutant S. aureus isolates. The ASN501, LYS504, ILE544 and GLY565 of WalK protein act as hydrogen acceptors to form four hydrogen bonds with neobavaisoflavone by molecular docking analysis, and TRY505 of WalK protein contact with neobavaisoflavone to form a pi-H bond. In conclusion, neobavaisoflavone had excellent inhibitory effect on the biofilm formation and α-toxin activity of S. aureus. The WalK protein might be a potential target of neobavaisoflavone against S. aureus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

Code Availability

The whole-genome sequencing data generated for this study can be found in the Sequence Read Archive (SRA) database under accession number PRJNA655596 (https://dataview.ncbi.nlm.nih.gov/object/PRJNA655596).

References

  1. David MZ, Daum RS (2017) Treatment of Staphylococcus aureus infections. Curr Top Microbiol Immunol 409:325–383. https://doi.org/10.1007/82_2017_42

    Article  CAS  PubMed  Google Scholar 

  2. Wilke GA, Wardenburg JB (2010) Role of a disintegrin and metalloprotease 10 in Staphylococcus aureus α-hemolysin–mediated cellular injury. Proc Natl Acad Sci USA 107(30):13473–13478. https://doi.org/10.1073/pnas.1001815107

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vestergaard M, Frees D, Ingmer H (2019) Antibiotic resistance and the MRSA problem. Microbiol Spectr 7(2):18. https://doi.org/10.1128/microbiolspec.GPP3-0057-2018

    Article  Google Scholar 

  4. Otto M (2018) Staphylococcal biofilms. Microbiol Spectr. https://doi.org/10.1128/microbiolspec.GPP3-0023-2018

    Article  PubMed  Google Scholar 

  5. Szliszka E, Czuba ZP, Sêdek Ł, Paradysz A, Król W (2011) Enhanced TRAIL-mediated apoptosis in prostate cancer cells by the bioactive compounds neobavaisoflavone and psoralidin isolated from Psoralea corylifolia. Pharmacol Rep 63(1):139–148. https://doi.org/10.1016/s1734-1140(11)70408-x

    Article  CAS  PubMed  Google Scholar 

  6. Xiao G, Li G, Chen L, Zhang Z, Yin JJ, Wu T et al (2010) Isolation of antioxidants from Psoralea corylifolia fruits using high-speed counter-current chromatography guided by thin layer chromatography-antioxidant autographic assay. J Chromatogr A 1217(34):5470–5476. https://doi.org/10.1016/j.chroma.2010.06.041

    Article  CAS  PubMed  Google Scholar 

  7. Abreu AC, Coqueiro A, Sultan AR, Lemmens N, Kim HK, Verpoorte R et al (2017) Looking to nature for a new concept in antimicrobial treatments: isoflavonoids from Cytisus striatus as antibiotic adjuvants against MRSA. Sci Rep 7(1):3777. https://doi.org/10.1038/s41598-017-03716-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang H, Shi Y, Chen J, Wang Y, Wang Z, Yu Z et al (2021) The antiviral drug efavirenz reduces biofilm formation and hemolysis by Staphylococcus aureus. J Med Microbiol 70(10):001433. https://doi.org/10.1099/jmm.0.001433

    Article  CAS  Google Scholar 

  9. Zheng J, Shang Y, Wu Y, Wu J, Chen J, Wang Z et al (2021) Diclazuril inhibits biofilm formation and hemolysis of Staphylococcus aureus. ACS Infect Dis 7(6):1690–1701. https://doi.org/10.1021/acsinfecdis.1c00030

    Article  CAS  PubMed  Google Scholar 

  10. Caiazza NC, O’Toole GA (2003) Alpha-toxin is required for biofilm formation by Staphylococcus aureus. J Bacteriol 185(10):3214–3217. https://doi.org/10.1128/JB.185.10.3214-3217.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu Y, Yang X, Gan J, Chen S, Xiao ZX, Cao Y (2022) CB-Dock2: improved protein-ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Res 50:159–164. https://doi.org/10.1093/nar/gkac394

    Article  CAS  Google Scholar 

  12. Zheng JX, Tu HP, Sun X, Xu GJ, Chen JW, Deng QW et al (2020) In vitro activities of telithromycin against Staphylococcus aureus biofilms compared with azithromycin, clindamycin, vancomycin and daptomycin. J Med Microbiol 69(1):120–131. https://doi.org/10.1099/jmm.0.001122

    Article  CAS  PubMed  Google Scholar 

  13. Du Y, Liu L, Zhang C, Zhang Y (2018) Two residues in Staphylococcus aureus α-hemolysin related to hemolysis and self-assembly. Infect Drug Resist 11:1271–1274. https://doi.org/10.2147/IDR.S167779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Álvarez-Martínez FJ, Barrajón-Catalán E, Micol V (2020) Tackling antibiotic resistance with compounds of natural origin: a comprehensive review. Biomedicines 8(10):405. https://doi.org/10.3390/biomedicines8100405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Payne DE, Martin NR, Parzych KR, Rickard AH, Underwood A, Boles BR (2013) Tannic acid inhibits Staphylococcus aureus surface colonization in an IsaA-dependent manner. Infect Immun 81(2):496–504. https://doi.org/10.1128/IAI.00877-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Quave CL, Estévez-Carmona M, Compadre CM, Hobby G, Hendrickson H, Beenken KE et al (2012) Ellagic acid derivatives from Rubus ulmifolius inhibit Staphylococcus aureus biofilm formation and improve response to antibiotics. PLoS ONE 7(1):e28737. https://doi.org/10.1371/journal.pone.0028737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yadav MK, Chae S-W, Im GJ, Chung J-W, Song J-J (2015) Eugenol: a phyto-compound effective against methicillin-resistant and methicillin-sensitive Staphylococcus aureus clinical strain biofilms. PLoS ONE 10(3):e0119564. https://doi.org/10.1371/journal.pone.0119564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee JH, Park JH, Cho HS, Joo SW, Cho MH, Lee J (2013) Anti-biofilm activities of quercetin and tannic acid against Staphylococcus aureus. Biofouling 29(5):491–4999. https://doi.org/10.1080/08927014.2013.788692

    Article  CAS  PubMed  Google Scholar 

  19. Cho HS, Lee JH, Cho MH, Lee J (2015) Red wines and flavonoids diminish Staphylococcus aureus virulence with anti-biofilm and anti-hemolytic activities. Biofouling 31(1):1–11. https://doi.org/10.1080/08927014.2014.991319

    Article  CAS  PubMed  Google Scholar 

  20. Lopes LAA, Dos Santos Rodrigues JB, Magnani M, de Souza EL, de Siqueira-Júnior JP (2017) Inhibitory effects of flavonoids on biofilm formation by Staphylococcus aureus that overexpresses efflux protein genes. Microb Pathog 107:193–197. https://doi.org/10.1016/j.micpath.2017.03.033

    Article  CAS  PubMed  Google Scholar 

  21. Lee JH, Kim YG, Yong Ryu S, Lee J (2016) Calcium-chelating alizarin and other anthraquinones inhibit biofilm formation and the hemolytic activity of Staphylococcus aureus. Sci Rep 6:19267. https://doi.org/10.1038/srep19267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim YG, Lee JH, Raorane CJ, Oh ST, Park JG, Lee J (2018) Biofilm formation and virulence. Front Microbiol 9:1241. https://doi.org/10.3389/fmicb.2018.01241

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kumar P, Lee JH, Beyenal H, Lee J (2020) Fatty acids as antibiofilm and antivirulence agents. Trends Microbiol 28(9):753–768. https://doi.org/10.1016/j.tim.2020.03.014

    Article  CAS  PubMed  Google Scholar 

  24. Monk IR, Shaikh N, Begg SL, Gajdiss M, Sharkey LKR, Lee JYH et al (2019) Zinc-binding to the cytoplasmic PAS domain regulates the essential WalK histidine kinase of Staphylococcus aureus. Nat Commun 10(1):1–13. https://doi.org/10.1038/s41467-019-10932-4

    Article  CAS  Google Scholar 

  25. Prüß BM (2017) Involvement of two-component signaling on bacterial motility and biofilm development. J Bacteriol 199(18):e00259-e1217. https://doi.org/10.1128/JB.00259-17

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rao Y, Peng H, Shang W, Hu Z, Yang Y, Tan L et al (2022) A vancomycin resistance-associated WalK(S221P) mutation attenuates the virulence of vancomycin-intermediate Staphylococcus aureus. J Adv Res 40:167–178. https://doi.org/10.1016/j.jare.2021.11.015

    Article  CAS  PubMed  Google Scholar 

  27. Shang H, Wang YS, Shen ZY (2015) National guide to clinical laboratory procedures. People’s Medical Publishing House, Beijing

    Google Scholar 

Download references

Acknowledgements

The authors thank Weiguang Pan and Jie Lian (Department of Laboratory Medicine, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen 518052, China) for helping identify and preserve the bacterial strains.

Funding

This work was supported by the following grants: National Natural Science Foundation of China (82172283); Natural Science Foundation of Guangdong Province, China (2020A1515010979, 2020A1515111146, 2021A1515011727); Shenzhen Key Medical Discipline Construction Fund (SZXK06162); Science, Technology and Innovation Commission of Shenzhen Municipality of basic research funds (JCYJ20180302144403714, JCYJ20190809144205640, JCYJ20190809110209389, JCYJ20190809151817062), the Shenzhen Nanshan District Scientific Research Program of the People’s Republic of China (No. NS2021009, NS2021066, NS2021144, NS2021140, NS2021117).

Author information

Authors and Affiliations

Authors

Contributions

Contributors FF, JZ and HZ were responsible for the organization and coordination of the trial. JZ and HZ were the chief investigators and responsible for the data analysis. HX, BC, DL, LN, ZW and ZY developed the trial design. All authors contributed to the writing of the final manuscript. All members of the JZ and HZ Study Team contributed to the management or administration of the trial. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jinxin Zheng or Haigang Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

All procedures involving human participants were performed in accordance with the ethical standards of Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center and with the 1964 Helsinki declaration and its later amendments, and this study was approved by the ethics committee of the Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center. Isolates were collected as part of the routine clinical management of patients, according to the national guidelines in China [27]. Therefore, informed consent was not sought.

Consent to Participate

Not applicable.

Consent to Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12 kb)

284_2023_3355_MOESM2_ESM.tif

Supplementary file2 (TIF 912 kb) Figure S1 Effect of different concentrations of Neobavaisoflavone on the biofilm formation of S. aureus. The 4 MSSA (a) and 4 MRSA (b) strains were treated with Neobavaisoflavone from 3.125 μM to 25 μM for 24 h. Biofilm biomasses were determined by crystal violet staining. The data presented was the average of three independent experiments (mean ± SD). Compared with control, *: P<0.05; **: P<0.01; ***: P<0.001; (Student’s t test). MSSA, methicillin-sensitive S. aureus; MRSA, methicillin-resistant S.aureus;

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, F., Xu, H., Chai, B. et al. Neobavaisoflavone Inhibits Biofilm Formation and α-Toxin Activity of Staphylococcus aureus. Curr Microbiol 80, 258 (2023). https://doi.org/10.1007/s00284-023-03355-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03355-4

Navigation