Skip to main content
Log in

Evaluation of XGEN Multi Sepsis Flow Chip Molecular Assay for Early Diagnosis of Bloodstream Infection

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Among healthcare-associated infections that can affect a critically ill patient, bloodstream infections are one of the most frequent causes of mortality, especially in hospitalized patients. The objective of this work is to evaluate the performance of the XGEN Multi Sepsis Flow Chip for the rapid diagnosis of bloodstream infections compared with conventional tests. In total, 101 positive blood culture samples were included, and the results obtained by the phenotypic conventional method (culture with susceptibility profile) were compared with results obtained by the XGEN Multi Sepsis Flow Chip. This molecular assay allows the simultaneous detection of the main bloodstream infection pathogens, and their most common antibiotic resistance markers in a short period of time. It was possible to observe substantial agreement between the methods for identifying the genus of pathogens. Considering species, the agreement was excellent. In relation to susceptibility, excellent agreement was noted between the detected resistance genes and susceptibility profile obtained through conventional antibiograms. The evaluated assay presented very early and satisfactory results for identification and detection of resistance genes of the main pathogens involved in bloodstream infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

When data are requested, they will be made available.

Code Availability

Not applicable.

References

  1. Vincent JL, Rello J, Marshall J, Silva E, Anzueto A, Martin CD, Moreno R, Lipman J, Gomersall C, Sakr Y, Reinhart K (2009) International study of the prevalence and outcomes of infection in intensive care units. JAMA 302(21):2323–2329. https://doi.org/10.1001/jama.2009.1754

    Article  CAS  PubMed  Google Scholar 

  2. Schwab F, Geffers C, Behnke M, Gastmeier P (2018) ICU mortality following ICU-acquired primary bloodstream infections according to the type of pathogen: a prospective cohort study in 937 Germany ICUs (2006–2015). PLoS ONE 13(3):e0194210. https://doi.org/10.1371/journal.pone.0194210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Maharath A, Ahmed MS (2021) bacterial etiology of bloodstream infections and antimicrobial resistance patterns from a tertiary care hospital in malé. Maldives Int J Microbiol 2021:3088202. https://doi.org/10.1155/2021/3088202

    Article  PubMed  Google Scholar 

  4. Martins HS, Brandão Neto RA, Scalabrini Neto A, Velasco IT (2012) Emergências clínicas: abordagem prática. Manole São Paulo

  5. Andriolo A (2018) Manual da residência de medicina laboratorial

  6. Vasudeva N, Nirwan PS, Shrivastava P (2016) Bloodstream infections and antimicrobial sensitivity patterns in a tertiary care hospital of India. Ther Adv Infect Dis 3(5):119–127. https://doi.org/10.1177/2049936116666983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tabah A, Lipman J, Barbier F, Buetti N, TimsitPatients—ESGCIP obotESGfIiCI J-F (2022) Use of Antimicrobials for bloodstream infections in the intensive care unit, a clinically oriented review. Antibiotics 11(3):362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Banerjee R, Teng CB, Cunningham SA, Ihde SM, Steckelberg JM, Moriarty JP, Shah ND, Mandrekar JN, Patel R (2015) Randomized trial of rapid multiplex polymerase chain reaction-based blood culture identification and susceptibility testing. Clin Infect Dis Off Publ Infect Dis Soci Am 61(7):1071–1080. https://doi.org/10.1093/cid/civ447

    Article  CAS  Google Scholar 

  9. Bizzini A, Jaton K, Romo D, Bille J, Prod’hom G, Greub G (2011) Matrix-assisted laser desorption ionization-time of flight mass spectrometry as an alternative to 16S rRNA gene sequencing for identification of difficult-to-identify bacterial strains. J Clin Microbiol 49(2):693–696. https://doi.org/10.1128/jcm.01463-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Beganovic M, Costello M, Wieczorkiewicz SM (2017) Effect of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) alone versus MALDI-TOF MS combined with real-time antimicrobial stewardship interventions on time to optimal antimicrobial therapy in patients with positive blood cultures. J Clin Microbiol 55(5):1437–1445. https://doi.org/10.1128/jcm.02245-16

    Article  PubMed  PubMed Central  Google Scholar 

  11. Timsit JF, Bassetti M, Cremer O, Daikos G, de Waele J, Kallil A, Kipnis E, Kollef M, Laupland K, Paiva JA, Rodríguez-Baño J, Ruppé É, Salluh J, Taccone FS, Weiss E, Barbier F (2019) Rationalizing antimicrobial therapy in the ICU: a narrative review. Intensive Care Med 45(2):172–189. https://doi.org/10.1007/s00134-019-05520-5

    Article  PubMed  Google Scholar 

  12. Stefaniuk E, Baraniak A, Gniadkowski M, Hryniewicz W (2003) Evaluation of the BD Phoenix automated identification and susceptibility testing system in clinical microbiology laboratory practice. Eur J Clin Microbiol Infect Dis Off Publ Eur Soci Clin Microbiol 22(8):479–485. https://doi.org/10.1007/s10096-003-0962-y

    Article  CAS  Google Scholar 

  13. Becton D (2005) BD Phoenix system user's manual, document L003342(M). In., p 13

  14. Dingle TC, Butler-Wu SM (2013) Maldi-tof mass spectrometry for microorganism identification. Clin Lab Med 33(3):589–609. https://doi.org/10.1016/j.cll.2013.03.001

    Article  PubMed  Google Scholar 

  15. O’Grady NP, Alexander M, Burns LA, Dellinger EP, Garland J, Heard SO, Lipsett PA, Masur H, Mermel LA, Pearson ML, Raad II, Randolph AG, Rupp ME, Saint S (2011) Guidelines for the prevention of intravascular catheter-related infections. Clin Infect Dis Off Publ Infect Dis Soci Am 52(9):e162-193. https://doi.org/10.1093/cid/cir257

    Article  Google Scholar 

  16. Greene ES (2021) Challenges in reducing the risk of infection when accessing vascular catheters. J Hosp Infect 113:130–144. https://doi.org/10.1016/j.jhin.2021.03.005

    Article  CAS  PubMed  Google Scholar 

  17. Agrawal V, Valson AT, Bakthavatchalam YD, Kakde S, Mohapatra A, David VG, Alexander S, Jacob S, Jude Prakash JA, Veeraraghavan B, Varughese S (2022) Skin Colonizers and Catheter Associated Blood Stream Infections in Incident Indian Dialysis Patients. Indian journal of nephrology 32(1):34–41. https://doi.org/10.4103/ijn.IJN_400_20

    Article  PubMed  Google Scholar 

  18. Rocchetti TT, Martins KB, Martins PYF, Oliveira RA, Mondelli AL, Fortaleza C, Cunha M (2018) Detection of the mecA gene and identification of Staphylococcus directly from blood culture bottles by multiplex polymerase chain reaction. Brazilian J Infect Dis Off Publ Brazilian Soci Infect Dis 22(2):99–105. https://doi.org/10.1016/j.bjid.2018.02.006

    Article  Google Scholar 

  19. Silveira GP, Nome F, Gesser JC, Sá MM, Terenzi H (2006) Recent achievements to combat bacterial resistance. Química Nova [online] 29(4):844–855. https://doi.org/10.1590/S0100-40422006000400037

    Article  CAS  Google Scholar 

  20. Yang S, Rothman RE (2004) PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. Lancet Infect Dis 4(6):337–348. https://doi.org/10.1016/s1473-3099(04)01044-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Afshari A, Schrenzel J, Ieven M, Harbarth S (2012) Bench-to-bedside review: Rapid molecular diagnostics for bloodstream infection–a new frontier? Crit Care 16(3):222. https://doi.org/10.1186/cc11202

    Article  PubMed  PubMed Central  Google Scholar 

  22. La Scola B (2011) Intact cell MALDI-TOF mass spectrometry-based approaches for the diagnosis of bloodstream infections. Expert Rev Mol Diagn 11(3):287–298. https://doi.org/10.1586/erm.11.12

    Article  CAS  PubMed  Google Scholar 

  23. Laupland KB, Zygun DA, Davies HD, Church DL, Louie TJ, Doig CJ (2002) Population-based assessment of intensive care unit-acquired bloodstream infections in adults: Incidence, risk factors, and associated mortality rate. Crit Care Med 30(11):2462–2467. https://doi.org/10.1097/00003246-200211000-00010

    Article  PubMed  Google Scholar 

  24. Zowawi HM, Forde BM, Alfaresi M, Alzarouni A, Farahat Y, Chong TM, Yin WF, Chan KG, Li J, Schembri MA, Beatson SA, Paterson DL (2015) Stepwise evolution of pandrug-resistance in Klebsiella pneumoniae. Sci Rep 5:15082. https://doi.org/10.1038/srep15082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fedler KA, Biedenbach DJ, Jones RN (2006) Assessment of pathogen frequency and resistance patterns among pediatric patient isolates: report from the 2004 SENTRY antimicrobial Surveillance Program on 3 continents. Diagn Microbiol Infect Dis 56(4):427–436. https://doi.org/10.1016/j.diagmicrobio.2006.07.003

    Article  CAS  PubMed  Google Scholar 

  26. Galiana A, Coy J, Gimeno A, Guzman NM, Rosales F, Merino E, Royo G, Rodríguez JC (2017) Evaluation of the sepsis flow chip assay for the diagnosis of blood infections. PLoS ONE 12(5):e0177627. https://doi.org/10.1371/journal.pone.0177627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Quiles MG, Boettger BC, Inoue FM, Monteiro J, Santos DW, Ponzio V, Carlesse F, Cappellano P, Carvalhaes CG, Pignatari ACC (2019) Direct matrix-assisted laser desorption ionization time-of-flight mass spectrometry and real-time PCR in a combined protocol for diagnosis of bloodstream infections: a turnaround time approach. Brazilian J Infect Dis Off Publ Brazilian Soci Infect Dis 23(3):164–172. https://doi.org/10.1016/j.bjid.2019.05.005

    Article  Google Scholar 

  28. Brasil (2013) Nota técnica nº 01/2013 - Medidas de prevenção e controle de infecções por enterobactérias multirresistentes In: Anvisa Andvs- (ed). Brasília, p 22

  29. Vardakas KZ, Anifantaki FI, Trigkidis KK, Falagas ME (2015) Rapid molecular diagnostic tests in patients with bacteremia: evaluation of their impact on decision making and clinical outcomes. Eur J Clin Microbiol Infect Dis 34(11):2149–2160. https://doi.org/10.1007/s10096-015-2466-y

    Article  CAS  PubMed  Google Scholar 

  30. Mancini N, Carletti S, Ghidoli N, Cichero P, Burioni R, Clementi M (2010) The era of molecular and other non-culture-based methods in diagnosis of sepsis. Clin Microbiol Rev 23(1):235–251. https://doi.org/10.1128/cmr.00043-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

MMM and CGC made substantial contributions to the conception, design, analysis of the data, draft of the work, and revision of the work; KB, BCB, ACCP performed acquisition and analysis of the data, and revision of the work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Maira M. Maluf.

Ethics declarations

Conflicts of interest

None.

Ethical Approval

This study was approved by the local ethical committee of Hospital São Paulo/UNIFESP (CAAE:77096017.9.0000.5505).

Consent to Participate

All authors agreed to participate.

Consent for Publication

All authors agreed to this submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maluf, M.M., Bauab, K., Boettger, B.C. et al. Evaluation of XGEN Multi Sepsis Flow Chip Molecular Assay for Early Diagnosis of Bloodstream Infection. Curr Microbiol 80, 231 (2023). https://doi.org/10.1007/s00284-023-03325-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03325-w

Navigation