Skip to main content

Advertisement

Log in

Improvements in Bioremediation Agents and Their Modified Strains in Mediating Environmental Pollution

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Environmental pollution has been a significant concern around the globe as the release of toxic pollutants is associated with carcinogenic, mutagenic, and teratogenic impacts on living organisms. Since microorganisms have the natural potential to degrade toxic metabolites into nontoxic forms, an eco-friendly approach known as bioremediation has been used to tackle toxic-induced pollution. Bioremediation has three fundamental levels, i.e., natural attenuation, bio-augmentation, and biostimulation in which the synthetic biology approach has been lately utilized to enhance the conventional bioremediation techniques. Recently, a more advanced approach of programmable nucleases such as zinc finger nucleases, tale-like effector nucleases, and clustered regularly interspaced short palindromic repeats Cas is being employed to engineer several bacterial, fungal, and algal strains for targeted mutagenesis by knocking in and out specific genes which are involved in reconstructing the metabolic pathways of native microbes. These genetically engineered microorganisms possess heavy metal resistance, greater substrate range, enhanced enzymatic activity, and binding affinity which accelerate the biodegradation of toxic pollutants to environmentally safe levels. This review provides a comprehensive understanding of how we can correlate the novel genetics-based approaches employed to produce genetically engineered microorganisms to enhance the biodegradation of hazardous pollutants, hence, developing a clean and sustainable ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

(Modified from: 52). The figure is demonstrating that how ZFNs, TALENs and CRISPR-Cas makes the double-stranded cuts at the trageted site of the genome and then insert the desired functional gene at that point, making the strain more potent for the degradation of pollutants

Fig. 4

Similar content being viewed by others

References

  1. Appannagari RR (2017) Environmental pollution causes and consequences: a study. North Asian Int Res J Social Sci Human 3(8):151–161

    Google Scholar 

  2. Khalid HS, Akhtar MF, Ijaz M, Iqbal M, Bukhari SA, Mustafa G, Shaukat K (2021) Role of metal-binding proteins and peptides in bioremediation of toxic metals. In Handbook of Bioremediation, pp. 437–444 Academic Press. https://doi.org/10.1016/B978-0-12-819382-2.00027-2

  3. Harrison RM, Alloway B (2001) Soil pollution and land contamination. Pollution pp. 352–377.

  4. Priya M, Gurung N, Mukherjee K, Bose S (2014) Microalgae in removal of heavy metal and organic pollutants from soil. Microbial biodegradation and bioremediation pp. 519–537, Elsevier. https://doi.org/10.1016/B978-0-12-800021-2.00023-6

  5. Basha SA, Rajaganesh K (2014) Microbial bioremediation of heavy metals from textile industry dye effluents using isolated bacterial strains. Int J Curr Microbiol Appl Sci 3:785–794

    Google Scholar 

  6. US Environmental Protection Agency, 2022. Avaialable from: https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations

  7. Haritash AK (2020) A comprehensive review of metabolic and genomic aspects of PAH-degradation. Arch Microbiol 202(8):2033–2058. https://doi.org/10.1007/s00203-020-01929-5

    Article  CAS  PubMed  Google Scholar 

  8. Wasi S, Tabrez S, Ahmad M (2013) Toxicological effects of major environmental pollutants: an overview. Environ Monit Assess 185(3):2585–2593. https://doi.org/10.1007/s10661-012-2732-8

    Article  PubMed  Google Scholar 

  9. Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32(11):1–18. https://doi.org/10.1007/s11274-016-2137-x

    Article  CAS  Google Scholar 

  10. Gopinath M, Pulla RH, Rajmohan K, Vijay P, Muthukumaran C, Gurunathan B (2018) Bioremediation of volatile organic compounds in biofilters In Bioremediation: Applications for Environmental Protection and Management pp 301–330 Springer. https://doi.org/10.1007/978-981-10-7485-1_15

  11. US Environmental Protection Agency, 2000. Marine Litter—Trash That Kills. Available from: ,http://www.epa.gov/owow/oceans/debris/toolkit/files/trash_that_kills508.pdf.

  12. Das S, Dash HR (2014) Microbial bioremediation: A potential tool for restoration of contaminated areas. Microbial biodegradation and bioremediation pp 1–21, Elsevier. https://doi.org/10.1016/B978-0-12-800021-2.00001-7

  13. Malla MA, Dubey A, Yadav S, Kumar A, Hashem A, Abd_Allah EF (2018) Understanding and Designing the Strategies for the Microbe-Mediated Remediation of Environmental Contaminants Using Omics Approaches. Front Microbiol, 9(1132). https://doi.org/10.3389/fmicb.2018.01132

  14. Hassan ZU, Ali S, Rizwan M, Ibrahim M, Nafees M, Waseem M (2017) Role of bioremediation agents (bacteria, fungi, and algae) in alleviating heavy metal toxicity. Probiotics in agroecosystem, pp. 517–537, Springer. https://doi.org/10.1007/978-981-10-4059-7_27

  15. Dangi AK, Sharma B, Hill RT, Shukla P (2019) Bioremediation through microbes: systems biology and metabolic engineering approach. Crit Rev Biotechnol 39(1):79–98. https://doi.org/10.1080/07388551.2018.1500997

    Article  CAS  PubMed  Google Scholar 

  16. Ibrahim AA, Khalifa UA, Sani A, Gado AM, Ismail G, Ibrahim MA, Adam UD (2021) Bioremediation: a biological tool for environmental mitigation. Int Res J Mod Eng Technol Sci 1:649–655

    Google Scholar 

  17. Joutey NT, Bahafid W, Sayel H, El Ghachtouli N (2013) Biodegradation: involved microorganisms and genetically engineered microorganisms. Biodegradation-life of science 1:289–320

    Google Scholar 

  18. Abou-Seeda M, Yassen A, Abou El-Nour E (2017) Microorganism as a tool of bioremediation technology for cleaning waste and industrial water. Biosci Res 14(3):633–644

    Google Scholar 

  19. Abatenh E, Gizaw B, Tsegaye Z, Wassie M (2017) The role of microorganisms in bioremediation-A review. Open J Environ Biol 2(1):038–046

    Article  Google Scholar 

  20. Luka Y, Highina BK, Zubairu A (2018) Bioremediation: A solution to environmental pollution-a review. Am J Eng Res 7(2):101–109

    Google Scholar 

  21. Tomei MC, Dauguli AJ (2013) Ex situ bioremediation of contaminated soils: an overview of conventional and innovative technologies. Cri Rev Environm Sci Technol 43(20):2107–2139. https://doi.org/10.1080/10643389.2012.672056

    Article  Google Scholar 

  22. Pant G, Garlapati D, Agrawal U, Prasuna RG, Mathimani T, Pugazhendhi A (2021) Biological approaches practised using genetically engineered microbes for a sustainable environment: A review. J Hazard Mater, 405, 124631. https://doi.org/10.1016/j.jhazmat.2020.124631

  23. Azad M, Kalam A, Amin L, Sidik NM (2014) Genetically engineered organisms for bioremediation of pollutants in contaminated sites. Chin Sci Bull 59(8):703–714. https://doi.org/10.1007/s11434-013-0058-8

    Article  CAS  Google Scholar 

  24. Gidarakos E, Aivalioti M (2007) Large scale and long term application of bioslurping: the case of a Greek petroleum refinery site. J Hazard Mater 149(3):574–581. https://doi.org/10.1016/j.jhazmat.2007.06.110

    Article  CAS  PubMed  Google Scholar 

  25. Shah V, Daverey A (2020) Phytoremediation: A multidisciplinary approach to clean up heavy metal contaminated soil. Environmental Technology & Innovation. Environ. Technol. Innov, 8, 100774. https://doi.org/10.1016/j.eti.2020.100774

  26. Mustafa HM, Hayder G (2021) Recent studies on applications of aquatic weed plants in phytoremediation of wastewater: A review article. Ain Shams Eng J 12(1):355–365. https://doi.org/10.1016/j.asej.2020.05.009

    Article  Google Scholar 

  27. Sayqal A, Ahmed OB (2021) Advances in heavy metal bioremediation: an overview. Appl Bionics Biomech, 2021. https://doi.org/10.1155/2021/1609149

  28. Harekrushna S, Kumar DC (2012) A review on bioremediation. Int J Res Chem Environ 2(1):13–21

    Google Scholar 

  29. Kumar NM, Muthukumaran, Sharmila G, Gurunathan B (2018) Genetically modified organisms and its impact on the enhancement of bioremediation Bioremediation: Applications for Environmental Protection and Management pp. 53–76, Springer. https://doi.org/10.1007/978-981-10-7485-1_4

  30. Lin C, Cheruiyot NK, Bui XT, Ngo HH (2022) Composting and its application in bioremediation of organic contaminants. Bioengineered 13(1):1073–1089. https://doi.org/10.1080/21655979.2021.2017624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sharma B, Dangi AK, Shukla P (2018) Contemporary enzyme based technologies for bioremediation: A review. J Environ Manage 210:10–22. https://doi.org/10.1016/j.jenvman.2017.12.075

    Article  CAS  PubMed  Google Scholar 

  32. Anjum NA, Gill SS, Tuteja N (2017) Biological approaches for enhancing the cleanup of environmental pollutants: an introduction. In Enhancing Cleanup of Environmental Pollutants (pp. 1–4). Springer, Cham. https://doi.org/10.1007/978-3-319-55426-6_1

  33. Kumari A, Chaudhary DR (2020) Engineered microbes and evolving plastic bioremediation technology Bioremediation of Pollutants pp. 417–443, Elsevier. https://doi.org/10.1016/B978-0-12-819025-8.00021-1

  34. Liu C, Shi C, Zhu S, Wei R, Yin CC (2019) Structural and functional characterization of polyethylene terephthalate hydrolase from Ideonella sakaiensis. Biochem Biophys Res Commun 508(1):289–294. https://doi.org/10.1016/j.bbrc.2018.11.148

    Article  CAS  PubMed  Google Scholar 

  35. Wu C, Li F, Yi S, Ge F (2021) Genetically engineered microbial remediation of soils co-contaminated by heavy metals and polycyclic aromatic hydrocarbons: Advances and ecological risk assessment. J Environ Manage, 296, 113185. https://doi.org/10.1016/j.jenvman.2021.113185

  36. Ibuot A, Dean AP, McIntosh OA, Pittman JK (2017) Metal bioremediation by CrMTP4 over-expressing Chlamydomonas reinhardtii in comparison to natural wastewater-tolerant microalgae strains. Algal Res 24:89–96. https://doi.org/10.1016/j.algal.2017.03.002

    Article  Google Scholar 

  37. Sharma B, Shukla P (2022) Futuristic avenues of metabolic engineering techniques in bioremediation. Biotechnol Appl Biochem 69(1):51–60. https://doi.org/10.1002/bab.2080

    Article  CAS  PubMed  Google Scholar 

  38. Kuhad RC, Singh A (2013) Biotechnology for environmental management and resource recovery. New Delhi, India, Springer. https://doi.org/10.1007/978-81-322-0876-1

    Article  Google Scholar 

  39. Kumar RR, Prasad S (2011) Metabolic engineering of bacteria. Indian J Microbiol 51(3):403–409. https://doi.org/10.1007/s12088-011-0172-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pandey P, Pathak H, Dave S (2018) Metabolic engineering and future prospects in bioremediation: A Minireview. Int J Res Anal Rev 5(3):664–668

    Google Scholar 

  41. Slot JC (2017) Fungal gene cluster diversity and evolution. Adv Genet 100:141–178. https://doi.org/10.1016/bs.adgen.2017.09.005

    Article  CAS  PubMed  Google Scholar 

  42. Li D, Yan J, Wang L, Zhang Y, Liu D, Geng H, Xiong L (2016) Characterization of the phthalate acid catabolic gene cluster in phthalate acid esters transforming bacterium-Gordonia sp. strain HS-NH1. Int Biodeterior Biodegrad 106:34–40. https://doi.org/10.1016/j.ibiod.2015.09.019

    Article  CAS  Google Scholar 

  43. Nguyen TL, Dang HT, Koekkoek J, Braster M, Parsons JR, Brouwer A, de Boer T, van Spanning RJ (2021) Species and Metabolic Pathways Involved in Bioremediation of Vietnamese Soil From Bien Hoa Airbase Contaminated With Herbicides. Front. Sustain. Cities, 3, 692018. https://doi.org/10.22541/au.159493101.19143630

  44. Kijima K, Mita H, Kawakami M, Amada K (2018) Role of CadC and CadD in the 2, 4-dichlorophenoxyacetic acid oxygenase system of Sphingomonas agrestis 58–1. J Biosci Bioeng 125(6):649–653. https://doi.org/10.1016/j.jbiosc.2018.01.003

    Article  CAS  PubMed  Google Scholar 

  45. Serbent MP, Rebelo AM, Pinheiro A, Giongo A, Tavares LB (2019) Biological agents for 2, 4-dichlorophenoxyacetic acid herbicide degradation. Appl Microbiol Biotechnol 103(13):5065–5078. https://doi.org/10.1007/s00253-019-09838-4

    Article  CAS  PubMed  Google Scholar 

  46. Bhatt P, Pathak R, Bhatt K (2019) System biology, simulation, and network analysis of enzymes in waste removal from the environment. In Smart bioremediation technologies pp 347–358 Academic Press. https://doi.org/10.1016/B978-0-12-818307-6.00018-4

  47. Puente-Sánchez F, Díaz S, Penacho V, Aguilera A, Olsson S (2018) Basis of genetic adaptation to heavy metal stress in the acidophilic green alga Chlamydomonas acidophila. Aquat Toxicol 200:62–72. https://doi.org/10.1016/j.aquatox.2018.04.020

    Article  CAS  PubMed  Google Scholar 

  48. Beauvais-Flück R, Slaveykova VI, Cosio C (2017) Cellular toxicity pathways of inorganic and methyl mercury in the green microalga Chlamydomonas reinhardtii. Sci Rep 7(1):1–12

    Article  Google Scholar 

  49. Wang Z, Gui H, Luo Z, Zhen Z, Yan C, Xing B (2019) Dissolved organic phosphorus enhances arsenate bioaccumulation and biotransformation in Microcystis aeruginosa. Enviro Pollut 252:1755–1763. https://doi.org/10.1016/j.envpol.2019.06.126

    Article  CAS  Google Scholar 

  50. Zheng X, Xing H, Zhang C (2017) Targeted mutagenesis: A sniper-like diversity generator in microbial engineering. Synth Syst Biotechnol 2(2):75–86. https://doi.org/10.1016/j.synbio.2017.07.001

    Article  PubMed  PubMed Central  Google Scholar 

  51. Javed MR, Sadaf M, Ahmed T, Jamil A, Nawaz M, Abbas H, Ijaz A (2018) CRISPR-Cas system: history and prospects as a genome editing tool in microorganisms. Curr Microbiol 75(12):1675–1683. https://doi.org/10.1007/s00284-018-1547-4

    Article  CAS  PubMed  Google Scholar 

  52. Carroll D (2011) Genome engineering with zinc-finger nucleases. Genetics 188(4):773–782. https://doi.org/10.1534/genetics.111.131433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14(1):49–55

    Article  CAS  PubMed  Google Scholar 

  54. Khan SH (2019) Genome-Editing Technologies: Concept, Pros, and Cons of Various Genome-Editing Techniques and Bioethical Concerns for Clinical Application. Mol Ther - Nucleic Acids 16:326–334. https://doi.org/10.1016/j.omtn.2019.02.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Stein HP, Navajas-Pérez R, Aranda E (2018) Potential for CRISPR genetic engineering to increase xenobiotic degradation capacities in model fungi. Approaches in bioremediation, pp. 61–78, Springer, Cham. https://doi.org/10.1007/978-3-030-02369-0_4

  56. Jaiswal S, Singh DK, Shukla P (2019) Gene editing and systems biology tools for pesticide bioremediation: a review. Front Microbiol 10:87. https://doi.org/10.3389/fmicb.2019.00087

    Article  PubMed  PubMed Central  Google Scholar 

  57. Jaiswal S, Shukla P (2020) Alternative strategies for microbial remediation of pollutants via synthetic biology. Fron Microbiol 11:808. https://doi.org/10.3389/fmicb.2020.00808

    Article  Google Scholar 

  58. Athira K, Sathish A, Nithya K, Guhananthan A (2020) Corn cob immobilised Chlorella sorokiniana for the sequestration of chromium ions from aqueous solution. Mater Today Proc 33:2148–2155. https://doi.org/10.1016/j.matpr.2020.03.151

    Article  CAS  Google Scholar 

  59. Jin Y, Wu S, Zeng Z, Fu Z (2017) Effects of environmental pollutants on gut microbiota. Environ Pollut 222:1–9. https://doi.org/10.1016/j.envpol.2016.11.045

    Article  CAS  PubMed  Google Scholar 

  60. Yadav KK, Gupta N, Kumar V, Singh JK (2017) Bioremediation of heavy metals from contaminated sites using potential species: a review. Indian J Environ Prot 37(1):65

    CAS  Google Scholar 

  61. Ojuederie OB, Babalola OO (2017) Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review. Int J Environ Res Public Health 14(12):1504. https://doi.org/10.3390/ijerph14121504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bukhari S, Tahir M, Akhter N, Anjum F, Anwar H, Mustafa G (2018) Phylogeny and comparative modeling of phytochelatin synthase from Chlorella sp. as an efficient bioagent for detoxification of heavy metals. J Biol Regul Homeost Agents, 32(5), 1191–1197.

  63. Chekroun KB, Sánchez E, Baghour M (2014) The role of algae in bioremediation of organic pollutants. Int Res J Public Environ Health 1(2):19–32

    Google Scholar 

  64. Ite A, Ibok U (2019) Role of plants and microbes in bioremediation of petroleum hydrocarbons contaminated soils. Int J Environ Bioremediat Biodegrad, 7(1), 1–19. https://doi.org/10.12691/ijebb-7-1-1

  65. Smith E, Thavamani P, Ramadass K, Naidu R, Srivastava P, Megharaj M (2015) Remediation trials for hydrocarbon-contaminated soils in arid environments: Evaluation of bioslurry and biopiling techniques. Int Biodeterior Biodegrada 101:56–65. https://doi.org/10.1016/j.ibiod.2015.03.029

    Article  CAS  Google Scholar 

  66. Fu P, Secundo F (2016) Algae and their bacterial consortia for soil bioremediation. Chem Eng Trans 49:427–432

    Google Scholar 

  67. Caruso G (2015) Plastic degrading microorganisms as a tool for bioremediation of plastic contamination in aquatic environments. J Pollut Eff Cont 3(3):1–2. https://doi.org/10.4172/2375-4397.1000e112

    Article  Google Scholar 

  68. Mahajan N, Gupta P (2015) New insights into the microbial degradation of polyurethanes. RSC Adv 5(52):41839–41854. https://doi.org/10.1039/C5RA04589D

    Article  CAS  Google Scholar 

  69. Auta HS, Emenike CU, Fauziah SH (2017) Distribution and importance of microplastics in the marine environment: a review of the sources, fate, effects, and potential solutions. Environ int 102:165–176. https://doi.org/10.1016/j.envint.2017.02.013

    Article  CAS  PubMed  Google Scholar 

  70. Barnes SJ (2019) Understanding plastics pollution: The role of economic development and technological research. Environ poll 249:812–821. https://doi.org/10.1016/j.envpol.2019.03.108

    Article  CAS  Google Scholar 

  71. Sanniyasi E, Gopal RK, Gunasekar DK, Raj PP (2021) Biodegradation of low-density polyethylene (LDPE) sheet by microalga. Uronema africanum Borge Sci Rep 11(1):1–33

    Google Scholar 

  72. Jalilian N, Najafpour GD, Khajouei M (2020) Macro and micro algae in pollution control and biofuel production–a review. ChemBioEng Rev 7(1):18–33. https://doi.org/10.1002/cben.201900014

    Article  CAS  Google Scholar 

  73. Mora-Ravelo S, Alarcon A, Rocandio-Rodriguez M, Vanoye-Eligio V (2017) Bioremediation of wastewater for reutilization in agricultural systems: a review. Appl Ecol Environ Res, 15(1), 33–50. https://doi.org/10.15666/aeer/1501_033050

  74. Shah A, Shah M (2020) Characterisation and bioremediation of wastewater: A review exploring bioremediation as a sustainable technique for pharmaceutical wastewater. Groundw Sustain Dev, 11, 100383. https://doi.org/10.1016/j.gsd.2020.100383

  75. Singh RK, Tripathi R, Ranjan A, Srivastava AK (2020) Fungi as potential candidates for bioremediation. In P. Singh, A. Kumar & A. Borthakur (Eds.), Abatement of Environmental Pollutants (pp. 177–191): Elsevier. https://doi.org/10.1016/B978-0-12-818095-2.00009-6

  76. Arregui L, Ayala M, Gómez-Gil X et al (2019) Laccases: structure, function, and potential application in water bioremediation. Microb Cell Fact 18(1):1–33

    Article  Google Scholar 

  77. Naghdi M, Taheran M, Brar SK, Kermanshahi-pour A, Verma M, Surampalli RY (2018) Removal of pharmaceutical compounds in water and wastewater using fungal oxidoreductase enzymes. Environ Pollut 234:190–213. https://doi.org/10.1016/j.envpol.2017.11.060

    Article  CAS  PubMed  Google Scholar 

  78. Uqab B, Mudasir S, Nazir R (2016) Review on bioremediation of pesticides. J Bioremediat Biodegrad 7(343):2. https://doi.org/10.4172/2155-6199.1000343

    Article  CAS  Google Scholar 

  79. Spina F, Cecchi G, Landinez-Torres A, Pecoraro L, Russo F, Wu B, Cai L, Liu XZ, Tosi S, Varese GC, Zotti M (2018) Fungi as a toolbox for sustainable bioremediation of pesticides in soil and water. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology 152(3):474–488. https://doi.org/10.1080/11263504.2018.1445130

    Article  Google Scholar 

  80. Zehra A, Dubey MK, Meena M, Aamir M, Patel CB, Upadhyay RS (2018) Role of penicillium species in bioremediation processes. New and future developments in microbial biotechnology and bioengineering, pp. 247–260, Elsevier. https://doi.org/10.1016/B978-0-444-63501-3.00014-4

  81. Giri BS, Geed S, Vikrant K, Lee SS, Kim KH, Kailasa SK, Vithanage M, Chaturvedi P, Rai BN, Singh RS (2021) Progress in bioremediation of pesticide residues in the environment. Environ Eng Res 26(6):77–100. https://doi.org/10.4491/eer.2020.446

    Article  Google Scholar 

  82. Silva A, Delerue-Matos C, Figueiredo SA, Freitas OM (2019) The use of algae and fungi for removal of pharmaceuticals by bioremediation and biosorption processes: a review. Water 11(8):1555. https://doi.org/10.3390/w11081555

    Article  CAS  Google Scholar 

  83. Litwińska K, Bischoff F, Matthes F, Bode R, Rutten T, Kunze G (2019) Characterization of recombinant laccase from Trametes versicolor synthesized by Arxula adeninivorans and its application in the degradation of pharmaceuticals. AMB Express 9(1):102. https://doi.org/10.1186/s13568-019-0832-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hussain I, Aleti G, Naidu R, Puschenreiter M, Mahmood Q, Rahman MM, Wang F, Shaheen S, Syed JH, Reichenauer TG (2018) Microbe and plant assisted-remediation of organic xenobiotics and its enhancement by genetically modified organisms and recombinant technology: a review. Sci Total Environ 628:1582–1599. https://doi.org/10.1016/j.scitotenv.2018.02.037

    Article  CAS  PubMed  Google Scholar 

  85. Yin K, Wang Q, Lv M, Chen L (2019) Microorganism remediation strategies towards heavy metals. Chem Eng J 360:1553–1563. https://doi.org/10.1016/j.cej.2018.10.226

    Article  CAS  Google Scholar 

  86. Marchut-Mikołajczyk O, Drożdżyński P, Januszewicz B, Domański J, Wrześniewska-Tosik K (2019) Degradation of ozonized tire rubber by aniline – Degrading Candida methanosorbosa BP6 strain. J Hazard Mater 367:8–14. https://doi.org/10.1016/j.jhazmat.2018.12.045

    Article  CAS  PubMed  Google Scholar 

  87. Bahl S, Dolma J, Singh JJ, Sehgal S (2021) Biodegradation of plastics: A state of the art review. Materials Today: Proceedings 39:31–34

    CAS  Google Scholar 

  88. Xiong JQ, Kurade MB, Jeon BH (2018) Can microalgae remove pharmaceutical contaminants from water? Trends Biotechnol 36(1):30–44. https://doi.org/10.1016/j.tibtech.2017.09.003

    Article  CAS  PubMed  Google Scholar 

  89. Chia MA, Lorenzi AS, Ameh I, Dauda S, Cordeiro-Araújo MK, Agee JT, Okpanachi IY, Adesalu AT (2021) Susceptibility of phytoplankton to the increasing presence of active pharmaceutical ingredients (APIs) in the aquatic environment: a review. Aquat Toxicol, 105809. https://doi.org/10.1016/j.aquatox.2021.105809

  90. Arora N, Dubey D, Sharma M, Patel A, Guleria A, Pruthi PA, Kumar D, Pruthi V, Poluri KM (2018) NMR-based metabolomic approach to elucidate the differential cellular responses during mitigation of arsenic (III, V) in a green microalga. ACS Omega 3(9):11536–11545. https://doi.org/10.1021/acsomega.8b01692

    Article  CAS  Google Scholar 

  91. Wongrod S, Simon S, van Hullebusch ED, Lens PN, Guibaud G (2019) Assessing arsenic redox state evolution in solution and solid phase during As (III) sorption onto chemically-treated sewage sludge digestate biochars. 274, 232–238. https://doi.org/10.1016/j.biortech.2018.12.056

Download references

Acknowledgements

The authors wish to thank all who assisted in conducting this work.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or nonprofit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study conception and design. Conceptualization and writing of the draft were done by AA and AR. The draft was revised and edited by AA and ARZ with the supervision of GM. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Ghulam Mustafa.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, A., Mustafa, G., Rana, A. et al. Improvements in Bioremediation Agents and Their Modified Strains in Mediating Environmental Pollution. Curr Microbiol 80, 208 (2023). https://doi.org/10.1007/s00284-023-03316-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03316-x

Navigation