Skip to main content
Log in

Stress-Resistance and Growth-Promoting Characteristics and Effects on Vegetable Seed Germination of Streptomyces sp. Strains Isolated from Wetland Plant Rhizospheres

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Wetlands are the most biologically diverse ecosystems on Earth. The isolation of Streptomyces strains from wetlands is helpful to study their diversity and functions in such habitats. In this study, six strains of Streptomyces were isolated from the rhizosphere soil of three plant species in the Huaxi Wetland at Guiyang and were identified as Streptomyces galilaeus, S. avidinii, S. albogriseolus, S. albidoflavus, S. spororaveus, and S. cellulosae, respectively. The six strains all solubilized phosphate, fixed nitrogen, and produced ACC deaminase and siderophores, and four strains also secreted indole-3-acetic acid. The six strains had the ability to resist to certain degrees of salinity, drought, and acidic/alkaline pH stress. In addition, the S. avidinii WL3 and S. cellulosae WL9 strains significantly promoted seed germination of mung bean, pepper, and cucumber, especially the WL3 strain. A pot experiment further showed that WL3 significantly promoted the growth of cucumber seedlings. Thus, strains of six species of Streptomyces with multiple plant growth-promoting characteristics were isolated from the wetland. These results lay a foundation for their potential use as microbial agents for seed-coating treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The authors confirm that all data of this study are included in this published article and its supplementary information files.

Code Availability

Not applicable.

References

  1. Backer R, Rokem JS, Ilangumaran G et al (2018) Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 9:1473. https://doi.org/10.3389/fpls.2018.01473

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lacey HJ, Rutledge PJ (2022) Recently discovered secondary metabolites from Streptomyces species. Molecules 27:887. https://doi.org/10.3390/molecules27030887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jacob S, Sajjalaguddam RR, Sudini HK (2018) Streptomyces sp. RP1A-12 mediated control of peanut stem rot caused by Sclerotium rolfsii. J Integr Agric 17:892–900. https://doi.org/10.1016/S2095-3119(17)61816-1

    Article  Google Scholar 

  4. Esmaeil ZNS, Saseghi A, Moradi P (2019) Streptomyces strains alleviate water stress and increase peppermint (Mentha piperita) yield and essential oils. Plant Soil 434:441–452. https://doi.org/10.1007/s11104-018-3862-8

    Article  CAS  Google Scholar 

  5. Van der Meij A, Worsley SF, Hutchings MI et al (2017) Chemical ecology of antibiotic production by actinomycetes. Fems Microbiol Rev 41:392–416. https://doi.org/10.1093/femsre/fux005

    Article  CAS  PubMed  Google Scholar 

  6. Tiwari K, Gupta RK (2012) Rare actinomycetes: a potential storehouse for novel antibiotics. Crit Rev Biotechnol 32:108–132. https://doi.org/10.3109/07388551.2011.562482

    Article  CAS  PubMed  Google Scholar 

  7. Neori A, Agami M (2017) The functioning of rhizosphere biota in wetlands-a review. Wetlands 37:615–633. https://doi.org/10.1007/s13157-016-0757-4

    Article  Google Scholar 

  8. Long Y, Jiang J, Hu X et al (2019) Actinobacterial community in Shuanghe cave using culture-dependent and -independent approaches. World J Microbiol Biotechnol 35:153. https://doi.org/10.1007/s11274-019-2713-y

    Article  CAS  PubMed  Google Scholar 

  9. Buchanan RE, Gibbons NE (1984) Bergey’s manual of determinative bacteriology, 8th edn. Science Press, Beijing, pp 729–758

    Google Scholar 

  10. Guo FL, Zhang HY, Yu XM et al (2014) First report of Streptomyces galilaeus associated with common scab in China. Plant Dis 98:683. https://doi.org/10.1094/pdis-07-13-0699-pdn

    Article  CAS  PubMed  Google Scholar 

  11. Rani R, Arora S, Kaur J et al (2018) Phenolic compounds as antioxidants and chemopreventive drugs from Streptomyces cellulosae strain TES17 isolated from rhizosphere of Camellia sinensis. BMC Complementary Altern Med 18:82. https://doi.org/10.1186/s12906-018-2154-4

    Article  CAS  Google Scholar 

  12. Guo Y, Zheng W, Rong X et al (2008) A multilocus phylogeny of the Streptomyces griseus 16S rRNA gene clade: use of multilocus sequence analysis for streptomycete systematics. Int J Syst Evol Microbiol 58:149–159. https://doi.org/10.1099/ijs.0.65224-0

    Article  CAS  PubMed  Google Scholar 

  13. Jaemsaeng R, Jantasuriyarat C, Thamchaipenet A (2018) Molecular interaction of 1-aminocyclopropane-1-carboxylate deaminase (ACCD)—producing endophytic Streptomyces sp. GMKU 336 towards salt-stress resistance of Oryza sativa L. cv. KDML105. Sci Rep 8:1950. https://doi.org/10.1038/s41598-018-19799-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Han D, Wang L, Luo Y (2018) Isolation, identification, and the growth promoting effects of two antagonistic actinomycete strains from the rhizosphere of Mikania micrantha kunth. Microbiol Res 208:1–11. https://doi.org/10.1016/j.micres.2018.01.003

    Article  CAS  PubMed  Google Scholar 

  15. Elizabeth P, Sulbarán M, Ball M et al (2007) Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern venezuelan region. Soil Biol Biochem 39:2905–2914. https://doi.org/10.1016/j.soilbio.2007.06.017

    Article  CAS  Google Scholar 

  16. Machuca A, Milagres AM (2003) Use of CAS-agar plate modified to study the effect of different variables on the siderophore production by Aspergillus. Lett Appl Microbiol 36:177–181. https://doi.org/10.1046/j.1472-765x.2003.01290.x

    Article  CAS  PubMed  Google Scholar 

  17. Zhang H, Han L, Jiang B et al (2021) Identification of a phosphorus-solubilizing Tsukamurella tyrosinosolvens strain and its effect on the bacterial diversity of the rhizosphere soil of peanuts growth-promoting. World J Microbiol Biotechnol 37:109. https://doi.org/10.1007/s11274-021-03078-3

    Article  CAS  PubMed  Google Scholar 

  18. Wang Y, Niu SQ, Zheng DD (2019) Screening, identification and optimization of fermentation conditions of an antagonistic actinomycetes to cucumber Fusarium wilt. Microbiology China 46:1062–1073. https://doi.org/10.13344/j.microbiol.china.180428

    Article  Google Scholar 

  19. Horstmann JL, Dias MP, Ortolan F et al (2020) Streptomyces sp. CLV45 from fabaceae rhizosphere benefits growth of soybean plants. Braz J Microbiol 51:1861–1871. https://doi.org/10.1007/s42770-020-00301-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gopalakrishnan S, Vadlamudi S, Bandikinda P (2014) Evaluation of Streptomyces strains isolated from herbal vermicompost for their plant growth-promotion traits in rice. Microbiol Res 169:40–48. https://doi.org/10.1016/j.micres.2013.09.008

    Article  CAS  PubMed  Google Scholar 

  21. Suriyachadkun C, Chunhachart O, Srithaworn M et al (2022) Zinc-Solubilizing Streptomyces spp. as bioinoculants for promoting the growth of soybean (Glycine max (L.) Merrill). J Microbiol Biotechnol 32:1435–1446. https://doi.org/10.4014/jmb.2206.06058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang XY, Li C, Hao JJ (2020) A novel Streptomyces sp. strain PBSH9 for controlling potato common scab caused by Streptomyces galilaeus. Plant Dis 104:1986–1993. https://doi.org/10.1094/PDIS-07-19-1469-RE

    Article  CAS  PubMed  Google Scholar 

  23. Laitinen OH, Kuusela TP, Kukkurainen S et al (2021) Bacterial avidins are a widely distributed protein family in Actinobacteria Proteobacteria and Bacteroidetes. BMC Ecol Evol 21(1):53. https://doi.org/10.1186/s12862-021-01784-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Samundeeswari A, Dhas SP, Nirmala J et al (2012) Biosynthesis of silver nanoparticles using actinobacterium Streptomyces albogriseolus and its antibacterial activity. Biotechnol Appl Biochem 59:503–507. https://doi.org/10.1002/bab.1054

    Article  CAS  PubMed  Google Scholar 

  25. Zeng Q, Huang H, Zhu J et al (2013) A new nematicidal compound produced by Streptomyces albogriseolus HA10002. Antonie Van Leeuwenhoek 103:1107–1111. https://doi.org/10.1007/s10482-013-9890-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chang PC, Liu SC, Ho MC et al (2022) A soil-isolated Streptomyces spororaveus species produces a high-molecular-weight antibiotic AF1 against fungi and gram-positive bacteria. Antibiotics (Basel) 11:679. https://doi.org/10.3390/antibiotics11050679

    Article  CAS  PubMed  Google Scholar 

  27. Abo-Zaid G, Abdelkhalek A, Matar S et al (2021) Application of bio-friendly formulations of chitinase-producing Streptomyces cellulosae actino 48 for controlling peanut soil-borne diseases caused by Sclerotium rolfsii. J Fungi (Basel) 7:167. https://doi.org/10.3390/jof7030167

    Article  CAS  PubMed  Google Scholar 

  28. Carlucci A, Raimondo ML, Colucci D et al (2022) Streptomyces albidoflavus Strain CARA17 as a biocontrol agent against fungal soil-borne pathogens of fennel plants. Plants (Basel) 11(11):1420. https://doi.org/10.3390/plants11111420

    Article  CAS  PubMed  Google Scholar 

  29. Du Y, Wang T, Jiang J et al (2022) Biological control and plant growth promotion properties of Streptomyces albidoflavus St-220 isolated from Salvia miltiorrhiza rhizosphere. Front Plant Sci 13:976813

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yao X, Zhang Z, Huang J et al (2021) Candicidin isomer production is essential for biocontrol of cucumber rhizoctonia rot by Streptomyces albidoflavus W68. Appl Environ Microbiol 87(9):e03078-e3120. https://doi.org/10.1128/AEM.03078-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ—Sci 26:1–20. https://doi.org/10.1016/j.jksus.2013.05.001

    Article  Google Scholar 

  32. Qin S, Zhang YJ, Yuan B et al (2014) Isolation of ACC deaminase-producing habitat-adapted symbiotic bacteria associated with halophyte Limonium sinense(Girard) kuntze and evaluating their plant growth-promoting activity under salt stress. Plant Soil 374:753–766. https://doi.org/10.1007/s11104-013-1918-3

    Article  CAS  Google Scholar 

  33. Rungin S, Indananda C, Suttiviriya P et al (2012) Plant growth enhancing effects by a siderophore-producing endophytic streptomycete isolated from a Thai jasmine rice plant (Oryza sativa L. cv. KDML105). Antonie Van Leeuwenhoek 102:463–472. https://doi.org/10.1007/s10482-012-9778-z

    Article  CAS  PubMed  Google Scholar 

  34. Orozco-Mosqueda MDC, Glick BR, Santoyo G et al (2020) ACC deaminase in plant growth-promoting bacteria (PGPB): an efficient mechanism to counter salt stress in crops. Microbiol Res 235:126439. https://doi.org/10.1016/j.micres.2020.126439

    Article  CAS  PubMed  Google Scholar 

  35. Wang QY, Wang JC, Ye L (2021) Research advances on enhancement of plant resistance to salinity stress by rhizobacteria containing ACC deaminase. Biotechnol Bull 37:174–186. https://doi.org/10.13560/j.cnki.biotech.bull.1985.2020-0831

    Article  CAS  Google Scholar 

  36. Han Y, Wang R, Yang Z et al (2015) 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas stutzeri A1501 facilitates the growth of rice in the presence of salt or heavy metals. J Microbiol Biotechnol 25:1119–1128. https://doi.org/10.4014/jmb.1412.12053

    Article  CAS  PubMed  Google Scholar 

  37. Naing AH, Maung TT, Kim CK (2021) The ACC deaminase-producing plant growth-promoting bacteria: Influences of bacterial strains and ACC deaminase activities in plant tolerance to abiotic stress. Physiol Plant 173:1992–2012. https://doi.org/10.1111/ppl.13545

    Article  CAS  PubMed  Google Scholar 

  38. Miljaković D, Marinković J, Tamindžić G et al (2022) Bio-priming of soybean with Bradyrhizobium japonicum and Bacillus megaterium: strategy toimprove seed germination and the initial seedling growth. Plants (Basel) 11:1927. https://doi.org/10.3390/plants11151927

    Article  CAS  PubMed  Google Scholar 

  39. Kthiri Z, Jabeur MB, Chairi F et al (2021) Exploring the potential of Meyerozyma guilliermondii on physiological performances and defense response against Fusarium crown rot on durum wheat. Pathogens 10:52. https://doi.org/10.3390/pathogens10010052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lastochkina O, Garshina D, Ivanov S et al (2020) Seed Priming with endophytic Bacillus subtilis modulates physiological responses of two different Triticum aestivum L. cultivars under drought stress. Plants (Basel) 9:1810. https://doi.org/10.3390/plants9121810

    Article  CAS  PubMed  Google Scholar 

  41. Kunova A, Bonaldi M, Saracchi M (2016) Selection of Streptomyces against soil borne fungal pathogens by a standardized dual culture assay and evaluation of their effects on seed germination and plant growth. BMC Microbiol 16:272. https://doi.org/10.1186/s12866-016-0886-1

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bonaldi M, Chen X, Kunova A et al (2015) Colonization of lettuce rhizosphere and roots by tagged Streptomyces. Front Microbiol 6:25. https://doi.org/10.3389/fmicb.2015.00025

    Article  PubMed  PubMed Central  Google Scholar 

  43. Boruta T (2021) A bioprocess perspective on the production of secondary metabolites by Streptomyces in submerged co-cultures. World J Microbiol Biotechnol 37:171. https://doi.org/10.1007/s11274-021-03141-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (32060028).

Author information

Authors and Affiliations

Authors

Contributions

LH is the corresponding author, HZ, XB, and YH are LH graduate students. LH designed the experiments, HZ wrote the manuscript, these three students performed the experiments, especially HZ. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lizhen Han.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Bai, X., Han, Y. et al. Stress-Resistance and Growth-Promoting Characteristics and Effects on Vegetable Seed Germination of Streptomyces sp. Strains Isolated from Wetland Plant Rhizospheres. Curr Microbiol 80, 190 (2023). https://doi.org/10.1007/s00284-023-03297-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03297-x

Navigation