Skip to main content

Advertisement

Log in

Gut Microbiota in Children with Hand Foot and Mouth Disease on 16S rRNA Gene Sequencing

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Hand foot and mouth disease (HFMD) is a contagious and seasonal viral disease in children. The gut microbiota of HFMD children is not clear now. The study aimed to explore the gut microbiota of HFMD children. The 16S rRNA gene of the gut microbiota of ten HFMD patients and ten healthy children were sequenced on the NovaSeq and PacBio platforms respectively. There were significant differences in gut microbiota between the patients and healthy children. The diversity and abundance of gut microbiota in HFMD patients were lower than that in healthy children. The species Roseburia inulinivorans and Romboutsia timonensis were more abundant in healthy children than those in HFMD patients, which suggests that the two species may be used as probiotics for adjusting the gut microbiota of HFMD patients. Meanwhile, the results of 16S rRNA gene sequences from the two platforms were different. The NovaSeq platform identified more microbiota and has the characteristics of high throughput, short time and low price. However, the NovaSeq platform has low resolution at the species level. The PacBio platform has high resolution based on its long reads length, which is more suitable for species-level analysis. But, the shortcomings of the high price and low throughput of PacBio still need to be overcome. With the development of sequencing technology, the reduction in sequencing price and the increase in throughput will promote the third-generation sequencing technology used in the study of gut microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The 16S rRNA gene sequence data have been deposited in the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) database on BioProject accession number PRJNA843173 and PRJNA843181.

References

  1. Ooi MH, Wong SC, Lewthwaite P, Cardosa MJ, Solomon T (2010) Clinical features, diagnosis, and management of enterovirus 71. Lancet Neurol 9:1097–1105. https://doi.org/10.1016/S1474-4422(10)70209-X

    Article  PubMed  Google Scholar 

  2. Aswathyraj S, Arunkumar G, Alidjinou E, Hober D (2016) Hand, foot and mouth disease (HFMD): emerging epidemiology and the need for a vaccine strategy. Med Microbiol Immunol 205:397–407. https://doi.org/10.1007/s00430-016-0465-y

    Article  CAS  PubMed  Google Scholar 

  3. Nguyen HX, Chu C, Dai Tran Q, Rutherford S, Phung D (2020) Temporal relationships between climate variables and hand-foot-mouth disease: a multi-province study in the Mekong Delta Region. Vietnam Int J Biometeorol 64:389–396. https://doi.org/10.1007/s00484-019-01824-9

    Article  PubMed  Google Scholar 

  4. Repass GL, Palmer WC, Stancampiano FF (2014) Hand, foot, and mouth disease: identifying and managing an acute viral syndrome. Cleve Clin J Med 81:537–543. https://doi.org/10.3949/ccjm.81a.13132

    Article  PubMed  Google Scholar 

  5. Ho SX, Min N, Wong EPY, Chong CY, Chu JJH (2021) Characterization of oral virome and microbiome revealed distinctive microbiome disruptions in paediatric patients with hand, foot and mouth disease. NPJ Biofilms Microbiomes 7:1–8. https://doi.org/10.1038/s41522-021-00190-y

    Article  CAS  Google Scholar 

  6. Saguil A, Kane SF, Lauters R, Mercado MG (2019) Hand-foot-and-mouth disease: rapid evidence review. Am Fam Physician 100:408–414

    PubMed  Google Scholar 

  7. Li Y, Chang Z, Wu P et al (2018) Emerging enteroviruses causing hand, foot and mouth disease, China, 2010–2016. Emerg Infect Dis 24:1902. https://doi.org/10.3201/eid2410.171953

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yu H, Cowling BJ (2019) Remaining challenges for prevention and control of hand, foot, and mouth disease. Lancet Child Adolesc Health 3:373–374. https://doi.org/10.1016/S2352-4642(19)30065-3

    Article  PubMed  Google Scholar 

  9. Fölster-Holst R (2018) Classical hand, foot and mouth disease replaced by atypical hand, foot and mouth disease. Acta Derm Venereol 98:303. https://doi.org/10.2340/00015555-2915

    Article  PubMed  Google Scholar 

  10. Mu CY, Wang AY, Chen C, Zhao L, Li Z (2015) A real-time RT-PCR assay for rapid detection of coxsackievirus A10. Genet Mol Res 14:17496–17504. https://doi.org/10.4238/2015

    Article  PubMed  Google Scholar 

  11. Esposito S, Principi N (2018) Hand, foot and mouth disease: current knowledge on clinical manifestations, epidemiology, aetiology and prevention. Eur J Clin Microbiol Infect Dis 37:391–398. https://doi.org/10.1007/s10096-018-3206-x

    Article  PubMed  Google Scholar 

  12. Yao LL, Chen W, Du YH, Li CL, Luo YW, Li HZ (2021) Immune mechanism of hand foot and mouth disease sepsis. Indian J Pediatr 88:70–71. https://doi.org/10.1007/s12098-020-03351-7

    Article  Google Scholar 

  13. Preveden T, Scarpellini E, Milić N, Luzza F, Abenavoli L (2017) Gut microbiota changes and chronic hepatitis C virus infection. Expert Rev Gastroenterol Hepatol 11:813–819. https://doi.org/10.1080/17474124.2017.1343663

    Article  CAS  PubMed  Google Scholar 

  14. Gu S, Chen Y, Wu Z et al (2020) Alterations of the gut microbiota in patients with coronavirus disease 2019 or H1N1 influenza. Clin Infect Dis 71:2669–2678. https://doi.org/10.1093/cid/ciaa709

    Article  CAS  PubMed  Google Scholar 

  15. Hertzberg VS, Singh H, Fournier CN et al (2022) Gut microbiome differences between amyotrophic lateral sclerosis patients and spouse controls. Amyotroph Lateral Scler Frontotemporal Degener 23:91–99. https://doi.org/10.1080/21678421.2021.1904994

    Article  CAS  PubMed  Google Scholar 

  16. Shen C, Xu Y, Ji J et al (2021) Intestinal microbiota has important effect on severity of hand foot and mouth disease in children. BMC Infect Dis 21:1–16. https://doi.org/10.1186/s12879-021-06748-7

    Article  CAS  Google Scholar 

  17. Chen Z, Hui PC, Hui M et al (2019) Impact of preservation method and 16S rRNA hypervariable region on gut microbiota profiling. Msystems 4:e00271-e1218. https://doi.org/10.1128/mSystems.00271-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Heather JM, Chain B (2016) The sequence of sequencers: The history of sequencing DNA. Genomics 107:1–8. https://doi.org/10.1016/j.ygeno.2015.11.003

    Article  CAS  PubMed  Google Scholar 

  19. Schuster SC (2008) Next-generation sequencing transforms today’s biology. Nat Methods 5:16–18. https://doi.org/10.1038/nmeth1156

    Article  CAS  PubMed  Google Scholar 

  20. Foox J, Tighe SW, Nicolet CM et al (2021) Performance assessment of DNA sequencing platforms in the ABRF next-generation sequencing study. Nat Biotechnol 39:1129–1140. https://doi.org/10.1038/s41587-021-01049-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cai L, Ye L, Tong AHY, Lok S, Zhang T (2013) Biased diversity metrics revealed by bacterial 16S pyrotags derived from different primer sets. PLoS ONE 8:e53649. https://doi.org/10.1371/journal.pone.0053649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wagner J, Coupland P, Browne HP, Lawley TD, Francis SC, Parkhill J (2016) Evaluation of PacBio sequencing for full-length bacterial 16S rRNA gene classification. BMC Microbiol 16:1–17. https://doi.org/10.1186/s12866-016-0891-4

    Article  CAS  Google Scholar 

  23. Rhoads A, Au KF (2015) PacBio sequencing and its applications. Genom Proteom Bioinform 13:278–289. https://doi.org/10.1016/j.gpb.2015.08.002

    Article  Google Scholar 

  24. Jain M, Koren S, Miga KH et al (2018) Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol 36:338–345. https://doi.org/10.1038/nbt.4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li XW, Ni X, Qian SY et al (2018) Chinese guidelines for the diagnosis and treatment of hand, foot and mouth disease (2018 edition). World J Pediatr 14:437–447. https://doi.org/10.1007/s12519-018-0189-8

    Article  PubMed  Google Scholar 

  26. Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963. https://doi.org/10.1093/bioinformatics/btr507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bokulich NA, Subramanian S, Faith JJ et al (2013) Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods 10:57–59. https://doi.org/10.1038/nmeth.2276

    Article  CAS  PubMed  Google Scholar 

  28. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. https://doi.org/10.1093/bioinformatics/btr381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998. https://doi.org/10.1038/nmeth.2604

    Article  CAS  PubMed  Google Scholar 

  31. Quast C, Pruesse E, Yilmaz P et al (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:590–596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  Google Scholar 

  32. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. White JR, Nagarajan N, Pop M (2009) Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput Biol 5:e1000352. https://doi.org/10.1371/journal.pcbi.1000352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Edgar RC (2018) Updating the 97% identity threshold for 16S ribosomal RNA OTUs. Bioinformatics 34:2371–2375. https://doi.org/10.1093/bioinformatics/bty113

    Article  CAS  PubMed  Google Scholar 

  35. Kowalska-Duplaga K, Gosiewski T, Kapusta P et al (2019) Differences in the intestinal microbiome of healthy children and patients with newly diagnosed Crohn’s disease. Sci Rep 9:1–11. https://doi.org/10.1038/s41598-019-55290-9

    Article  CAS  Google Scholar 

  36. Li W, Wu X, Hu X et al (2017) Structural changes of gut microbiota in Parkinson’s disease and its correlation with clinical features. Sci China Life Sci 60:1223–1233. https://doi.org/10.1007/s11427-016-9001-4

    Article  PubMed  Google Scholar 

  37. Groves HT, Cuthbertson L, James P, Moffatt MF, Cox MJ, Tregoning JS (2018) Respiratory disease following viral lung infection alters the murine gut microbiota. Front Immunol 9:182. https://doi.org/10.3389/fimmu.2018.00182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ley RE, Hamady M, Lozupone C et al (2008) Evolution of mammals and their gut microbes. Science 320:1647–1651. https://doi.org/10.1126/science.1155725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cockburn DW, Koropatkin NM (2016) Polysaccharide degradation by the intestinal microbiota and its influence on human health and disease. J Mol Biol 428:3230–3252. https://doi.org/10.1016/j.jmb.2016.06.021

    Article  CAS  PubMed  Google Scholar 

  40. Litvak Y, Byndloss MX, Tsolis RM, Bäumler AJ (2017) Dysbiotic Proteobacteria expansion: a microbial signature of epithelial dysfunction. Curr Opin Microbiol 39:1–6. https://doi.org/10.1016/j.mib.2017.07.003

    Article  CAS  PubMed  Google Scholar 

  41. Morgan XC, Tickle TL, Sokol H et al (2012) Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 13:1–18. https://doi.org/10.1186/gb-2012-13-9-r79

    Article  CAS  Google Scholar 

  42. Grigor’eva IN (2021) Gallstone disease, obesity and the Firmicutes/Bacteroidetes ratio as a possible biomarker of gut dysbiosis. J Pers Med 11:13. https://doi.org/10.3390/jpm11010013

    Article  Google Scholar 

  43. Takahashi K, Andoh A (2016) Reduced abundance of butyrate-producing bacteria species in the fecal microbial community in Crohn’s disease. Digestion 93:59–65. https://doi.org/10.1159/000441768

    Article  CAS  PubMed  Google Scholar 

  44. Cavanagh J, Howard J, Whitby J (1956) The neurotoxin of Shigella shigae. A comparative study of the effects produced in various laboratory animals. Br J Exp Pathol 37:272

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Bridgwater F, Morgan R, Rowson K, Wright GP (1955) The neurotoxin of Shigella shigae: morphological and functional lesions produced in the central nervous system of rabbits. Br J Exp Pathol 36:447

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Magruder M, Edusei E, Zhang L et al (2020) Gut commensal microbiota and decreased risk for Enterobacteriaceae bacteriuria and urinary tract infection. Gut Microbes 12:1805281. https://doi.org/10.1080/19490976.2020.1805281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tamanai-Shacoori Z, Smida I, Bousarghin L et al (2017) Roseburia spp.: a marker of health? Future Microbiol 12:157–170. https://doi.org/10.2217/fmb-2016-0130

    Article  CAS  PubMed  Google Scholar 

  48. Sharon G, Cruz NJ, Kang DW et al (2019) Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell 177:1600–1618. https://doi.org/10.1016/j.cell.2019.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu S, Zhao W, Liu X, Cheng L (2020) Metagenomic analysis of the gut microbiome in atherosclerosis patients identify cross-cohort microbial signatures and potential therapeutic target. FASEB J 34:14166–14181. https://doi.org/10.1096/fj.202000622R

    Article  CAS  PubMed  Google Scholar 

  50. Li W, Zhu Y, Li Y et al (2019) The gut microbiota of hand, foot and mouth disease patients demonstrates down-regulated butyrate-producing bacteria and up-regulated inflammation-inducing bacteria. Acta Paediatr 108:1133–1139. https://doi.org/10.1111/apa.14644

    Article  CAS  PubMed  Google Scholar 

  51. Collins JW, Keeney KM, Crepin VF et al (2014) Citrobacter rodentium: infection, inflammation and the microbiota. Nat Rev Microbiol 12:612–623. https://doi.org/10.1038/nrmicro3315

    Article  CAS  PubMed  Google Scholar 

  52. Webber M, Piddock LJ (2001) Quinolone resistance in Escherichia coli. Vet Res 32:275–284. https://doi.org/10.1051/vetres:2001124

    Article  CAS  PubMed  Google Scholar 

  53. Choi SC (2016) On the study of microbial transcriptomes using second-and third-generation sequencing technologies. J Microbiol 54:527–536. https://doi.org/10.1007/s12275-016-6233-2

    Article  CAS  PubMed  Google Scholar 

  54. Land M, Hauser L, Jun SR et al (2015) Insights from 20 years of bacterial genome sequencing. Funct Integr Genom 15:141–161. https://doi.org/10.1007/s10142-015-0433-4

    Article  CAS  Google Scholar 

  55. Wei N, Bemmels JB, Dick CW (2014) The effects of read length, quality and quantity on microsatellite discovery and primer development: from Illumina to PacBio. Mol Ecol Resour 14:953–965. https://doi.org/10.1111/1755-0998.12245

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by the Zibo City school city integration development project (2018zbxc215) and the National Natural Science Foundation of China (31870201).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, RF and LH; methodology, HS, ZZ, and TW; software, YZ and YL; validation, YZ, YL, RF and LH; formal analysis, YZ and YL; investigation, HS, ZZ, and TW; resources, RF and LH; data curation, HS, ZZ, TW, RF and LH; writing—original draft preparation, YZ and YL; writing—review and editing, YZ, YL and LH; visualization, HS, ZZ, TW, YZ and YL; supervision, RF and LH; project administration, RF and LH; funding acquisition, RF and LH. All authors have read and agreed to the published the manuscript.

Corresponding authors

Correspondence to Rongjun Fan or Lu Han.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

The study protocol was approved by the Ethical Committee of the First Hospital of Zibo (LY180003) and was carried out according to a statement from Helsinki.

Consent to Participate

Informed consent was obtained from the patient's parent or legal guardian.

Consent for Publication

Informed consent was obtained from the patient's parent or legal guardian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 548 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, Y., Lin, Y., Sun, H. et al. Gut Microbiota in Children with Hand Foot and Mouth Disease on 16S rRNA Gene Sequencing. Curr Microbiol 80, 159 (2023). https://doi.org/10.1007/s00284-023-03277-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03277-1

Navigation