Skip to main content

Advertisement

Log in

Host-Specific Differences in Gut Microbiota Between Cricetulus barabensis and Phodopus sungorus

  • Short Communication
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Gut microbiota plays an important role in the health of the host and is usually associated with the physiological processes of animals. Both host-specific factors and environmental factors are involved in the shaping of the gut microbial community, and it is necessary to identify the host-dominated differences in gut microbiota among animal species to better explain how they affect the choice of life history strategies in hosts. Here, striped hamsters Cricetulus barabensis and Djungarian hamsters Phodopus sungorus were housed under the same controlled conditions, and fecal samples were collected to compare gut microbiota. A higher Shannon index was observed in striped hamsters than in Djungarian hamsters. Linear discriminant analysis of effect size showed enrichment of the family Lachnospiraceae and genera Muribaculum and Oscillibacter in striped hamsters, with the enrichment of family Erysipelotrichaceae and genus Turicibacter in Djungarian hamsters. Among the top 10 amplicon sequence variants (ASVs), eight showed significantly different relative abundance between the two hamster species. The positive correlations and average degree in the co-occurrence network of striped hamsters were less than those of Djungarian hamsters, showing different complexity of synergistic effects among the gut bacteria. The gut microbial community of striped hamsters had a higher R2 value than that of Djungarian hamsters when fitted with a neutral community model. These differences have a degree of consistency with the variation in the lifestyles of the two hamster species. The study provides insights into the understanding of gut microbiota and its connections with rodent hosts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability

The raw reads were deposited into the National Center for Biotechnology Information database: PRJNA886860.

Code Availability

All software in this study is accessed via a formal application process.

References

  1. Hussain T, Murtaza G, Kalhoro DH et al (2021) Relationship between gut microbiota and host-metabolism: emphasis on hormones related to reproductive function. Anim Nutr 7(1):1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lu Y, Yuan X, Wang M et al (2022) Gut microbiota influence immunotherapy responses: mechanisms and therapeutic strategies. J Hematol Oncol 15(1):47

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bo TB, Zhang XY, Wen J et al (2019) The microbiota–gut–brain interaction in regulating host metabolic adaptation to cold in male Brandt’s voles (Lasiopodomys brandtii). ISME J 13(12):3037–3053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tripathi A, Debelius J, Brenner DA et al (2018) The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol 15(7):397–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Alessandri G, Milani C, Mancabelli L et al (2019) Metagenomic dissection of the canine gut microbiota: insights into taxonomic, metabolic and nutritional features. Environ Microbiol 21(4):1331–1343

    Article  CAS  PubMed  Google Scholar 

  6. Greene LK, Williams C, Junge RE et al (2020) A role for gut microbiota in host niche differentiation. ISME J 14(7):1675–1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Song SJ, Sanders JG, Delsuc F et al (2020) Comparative analyses of vertebrate gut microbiomes reveal convergence between birds and bats. mBio 11(1):e02901-19

  8. Bestion E, Jacob S, Zinger L et al (2017) Climate warming reduces gut microbiota diversity in a vertebrate ectotherm. Nat Ecol Evol 1(6):161

    Article  PubMed  Google Scholar 

  9. Maurice CF, Knowles SC, Ladau J et al (2015) Marked seasonal variation in the wild mouse gut microbiota. ISME J 9(11):2423–2434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Donovan M, Mackey CS, Platt GN et al (2020) Social isolation alters behavior, the gut-immune-brain axis, and neurochemical circuits in male and female prairie voles. Neurobiol Stress 13:100278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang Z, Xu D, Wang L et al (2016) Convergent evolution of rumen microbiomes in high-altitude mammals. Curr Biol 26(14):1873–1879

    Article  CAS  PubMed  Google Scholar 

  12. Fu H, Zhang L, Fan C et al (2020) Environment and host species identity shape gut microbiota diversity in sympatric herbivorous mammals. Microb Biotechnol 14(4):1300–1315

    Article  PubMed  PubMed Central  Google Scholar 

  13. Teng Y, Yang X, Li G et al (2022) Habitats show more impacts than host species in shaping gut microbiota of sympatric rodent species in a fragmented forest. Front Microbiol 13:811990

    Article  PubMed  PubMed Central  Google Scholar 

  14. Maraci Ö, Antonatou-Papaioannou A, Jünemann S et al (2021) The gut microbial composition is species-specific and individual-specific in two species of estrildid finches, the Bengalese finch and the zebra finch. Front Microbiol 12:619141

    Article  PubMed  PubMed Central  Google Scholar 

  15. Xue HL, Xu JH, Chen L et al (2014) Genetic variation of the striped hamster (Cricetulus barabensis) and the impact of population density and environmental factors. Zool Stud 53:63

    Article  Google Scholar 

  16. Dong W, Hou X, Zhou Y et al (1998) Studies on population and prediction of Phodopus sungorus. Acta Agrest Sin 6(3):207–211 (in Chinese)

    Google Scholar 

  17. Kameyama M, Yabata J, Obane N et al (2016) Detection of pathogenic Yersinia enterocolitica in pet Djungarian hamsters in Japan. J Vet Med Sci 78(10):1639–1641

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lozupone CA, Stombaugh JI, Gordon JI et al (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489(7415):220–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Knowles SCL, Eccles RM, Baltrūnaitė L (2019) Species identity dominates over environment in shaping the microbiota of small mammals. Ecol Lett 22(5):826–837

    Article  CAS  PubMed  Google Scholar 

  20. Flint HJ, Bayer EA (2008) Plant cell wall breakdown by anaerobic microorganisms from the mammalian digestive tract. Ann N Y Acad Sci 1125:280–288

    Article  CAS  PubMed  Google Scholar 

  21. Zhao J, Zhang X, Liu H et al (2019) Dietary protein and gut microbiota composition and function. Curr Protein Pept Sci 20(2):145–154

    Article  CAS  PubMed  Google Scholar 

  22. Vacca M, Celano G, Calabrese FM et al (2020) The controversial role of human gut Lachnospiraceae. Microorganisms 8(4):573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kohl KD, Amaya J, Passement CA et al (2014) Unique and shared responses of the gut microbiota to prolonged fasting: a comparative study across five classes of vertebrate hosts. FEMS Microbiol Ecol 90(3):883–894

    Article  CAS  PubMed  Google Scholar 

  24. Zhao J, Gong L, Wu L et al (2020) Immunomodulatory effects of fermented fig (Ficus carica L.) fruit extracts on cyclophosphamide-treated mice. J Funct Foods 75:104219

  25. Truong VL, Jeong WS (2022) Antioxidant and anti-inflammatory roles of tea polyphenols in inflammatory bowel diseases. Food Sci Hum Well 11(3):502–511

    Article  CAS  Google Scholar 

  26. Yi L, Zhang Z, Li Z et al (2023) Effects of citrus pulp on the composition and diversity of broiler cecal microbes. Poult Sci 102(3):102454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang K, Chen H, Liu Y et al (2022) Lactic acid bacteria strains selected from fermented total mixed rations improve ensiling and in vitro rumen fermentation characteristics of corn stover silage. Anim Biosci 35(9):1379–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hernandez DJ, David AS, Menges ES et al (2021) Environmental stress destabilizes microbial networks. ISME J 15(6):1722–1734

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chen W, Ren K, Isabwe A et al (2019) Stochastic processes shape microeukaryotic community assembly in a subtropical river across wet and dry seasons. Microbiome 7:138

    Article  PubMed  PubMed Central  Google Scholar 

  30. Li B, Gao H, Song P et al (2022) Captivity shifts gut microbiota communities in white-lipped deer (Cervus albirostris). Animals (Basel) 12(4):431

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the assistance of Majorbio Bio-Pharm Technology Co. Ltd.

Funding

This work was supported by the Initial Scientific Research Fund for Young Teachers at Qufu Normal University (612501) and the National Natural Science Foundation of China (32072436; 31972283).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: CF and LX; methodology: CF, JX, and SW; software: CF and HX; visualization: CF; writing-original draft preparation: CF; writing-review and editing: HX, MW, and LC; supervision: LX. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Chao Fan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Ethical approval

All procedures followed the Laboratory Animal Guidelines for the Ethical Review of Animal Welfare (GB/T 35892-2018) and were approved by the Biomedical Ethics Committee of Qufu Normal University (Permit No. dwsc2022058).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 406 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, C., Xue, H., Xu, J. et al. Host-Specific Differences in Gut Microbiota Between Cricetulus barabensis and Phodopus sungorus. Curr Microbiol 80, 149 (2023). https://doi.org/10.1007/s00284-023-03274-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03274-4

Navigation