Skip to main content
Log in

Azospirillum Aestuarii sp. nov., a Novel Nitrogen-Fixting and Aerobic Denitrifying Bacteria Isolated from an Estuary of a Freshwater River

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A novel Gram-staining negative, aerobic, rod-shaped bacterium, designated strain YIM DDC1T, was isolated from an estuary sediment sample of Dongda River flowing into Dianchi lake in Yunnan, southwest China. The strain displayed growth at 10–40 °C (optimum of 28 °C), pH 5.0–9.0 (optimum of 7.0–8.0) and in presence of 0–3% (w/v) NaCl (optimum of 0–1%). Strain YIM DDC1T comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and two unidentified aminolipids as the predominant polar lipids; the ubiquinone 10 as the major respiratory quinone; and summed feature 8 (C18:1ω6c and/or C18:1ω7c), summed feature 3 (C16:1ω7c and/or C16:1ω6c) and C18:1 2-OH as the major cellular fatty acids. Analysis of 16S rRNA showed that YIM DDC1T represents a member of the genus Azospirillum, and was closely related to A. brasilense ATCC 29145 T (98.9%), A. baldaniorum Sp245T (98.2%), A. argentinense Az39T (98.2%) and A. formosense CC-Nfb-7 T (98.2%). The draft genome size was 7.15 Mbp with a 68.4% G + C content. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain YIM DDC1T and the aforementioned closely related strains exhibited similarity in the range of 93.8–93.5% and 53.7–52.7%, respectively. nif gene cluster (nifHDK) and denitrification genes ((napA, nirS, nirK, norBC and nosZ) detected in the genome indicated its potential nitrogen fixation and full-fledged denitrifying function. Based on combined genotypic and phenotypic data, strain YIM DDC1T represents a novel species of the genus Azospirillum, for which the name Azospirillum aestuarii sp. nov. is proposed. The type strain is YIM DDC1T (= KCTC 42887 T = CGMCC 1.17325 T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ANI:

Average nucleotide identity

dDDH:

Digital DNA-DNA hybridization

LB:

Luria–Bertani

ML:

Maximum-likelihood

MP:

Maximum-parsimony

NA:

Nutrient agar

NJ:

Neighbour-joining

R2A:

Reasoner’s 2A

TSA:

Tryptic soy agar

References

  1. Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold LM, Tindall BJ, Gronow S, Kyrpides NC, Woyke T, Göker M (2020) Analysis of 1,000+ Type-strain genomes substantially improves taxonomic classification of Alphaproteobacteria. Front Microbiol 11:468

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tarrand JJ, Krieg NR, Döbereiner J (1978) A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp nov. Can J Microbiol 24:967–980

    Article  CAS  PubMed  Google Scholar 

  3. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M (2020) List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 70:5607–5612

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dos Santos FN, Coniglio A, Puente M, Sant’Anna FH, Maroniche G, García J, Molina R, Nievas S, Volpiano CG, Ambrosini A, Passaglia LMP, Pedraza RO, Reis VM, Zilli JÉ, Cassan F (2022) Genome-based reclassification of Azospirillum brasilense Az39 as the type strain of Azospirillum argentinense sp. nov. Int J Syst Evol Microbiol. https://doi.org/10.1099/ijsem.0.005475

    Article  PubMed  Google Scholar 

  5. Lin SY, Young CC, HupferH SC, Arun AB, Chen WM, Lai WA, Shen FT, Rekha PD, Yassin AF (2009) Azospirillum picis sp nov, isolated from discarded tar. Int J Syst Evol Microbiol 59:761–765

    Article  CAS  PubMed  Google Scholar 

  6. Lavrinenko K, Chernousova E, Gridneva E, Dubinina G, Akimov V, Kuever J, Lysenko A, Grabovich M (2010) Azospirillum thiophilum sp. nov., a diazotrophic bacterium isolated from a sulfide spring. Int J Syst Evol Microbiol 60:2832–2837

    Article  CAS  PubMed  Google Scholar 

  7. Zhou S, Han L, Wang Y, Yang G, Zhuang L, Hu P (2013) Azospirillum humicireducens sp. nov., a nitrogen-fixing bacterium isolated from a microbial fuel cell. Int J Syst Evol Microbiol 63:2618–2624

    Article  CAS  PubMed  Google Scholar 

  8. Young CC, Hupfer H, Siering C, Ho MJ, Arun AB, Lai WA, Rekha PD, Shen FT, Hung MH, Chen WM, Yassin AF (2008) Azospirillum rugosum sp nov, isolated from oil-contaminated soil. Int J Syst Evol Microbiol 58:959–963

    Article  CAS  PubMed  Google Scholar 

  9. Zhao ZL, Ming H, Ding CL, Ji WL, Cheng LJ, Niu MM, Zhang YM, Zhang LY, Meng XL, Nie GX (2020) Azospirillum thermophilum sp. nov., isolated from a hot spring. Int J Syst Evol Microbiol 70:550–554

    Article  PubMed  Google Scholar 

  10. Okon Y, Labandera-Gonzalez CA (1994) Agronomic applications of azospirillum: An evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 26:1591–1601

    Article  CAS  Google Scholar 

  11. Cassán F, Diaz-Zorita M (2016) Azospirillum sp. in current agriculture: from the laboratory to the field. Soil Biol Biochem 103:117–130

    Article  Google Scholar 

  12. Díaz-Zorita M, Fernández-Canigia MV (2009) Field performance of a liquid formulation of Azospirillum brasilense on dryland wheat productivity. Eur J Soil Biol 45:3–11

    Article  Google Scholar 

  13. Cassán F, Coniglio A, López G, Molina R, Nievas S et al (2020) Everything you must know about Azospirillum and its impact on agriculture and beyond. Biol Fertil Soils 56:461–479

    Article  Google Scholar 

  14. Reinhold B, HurekT FI, Pot B, Gillis M et al (1987) Azospirillum halopraeferens sp. nov., a nitrogen-fixing organism associated with roots of kallar grass (Leptochloa fusca (L.) Kunth). Int J Syst Bacteriol 37:43–51

    Article  Google Scholar 

  15. Magee CM, Rodeheaver G, Edgerton RF (1975) A more reliable gram staining technique for diagnosis of surgical infections. Am J Surg 130:341–346

    Article  CAS  PubMed  Google Scholar 

  16. Gregersen T (1978) Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:123–127

    Article  Google Scholar 

  17. Murray RGE, Doetsch RN, Robinow CF (1994) Light microscopy. In: Gephardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general molecular bacteriology. American Society for Microbiology, Washington, DC

    Google Scholar 

  18. Kovacs N (1956) Identification of Pseudomonas pyocyanea by oxidase reaction. Nature 178:703–704

    Article  CAS  PubMed  Google Scholar 

  19. Lányí B (1988) Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19:1–67

    Article  Google Scholar 

  20. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P (ed) Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, DC, pp 607–654

    Google Scholar 

  21. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20:16

    Google Scholar 

  22. Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230

    Article  CAS  PubMed  Google Scholar 

  23. Tamaoka J, Katayama-Fujimura Y, Kuraishi H (1983) Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 54:31–36

    Article  CAS  Google Scholar 

  24. Minnikin DE, Collins MD, Goodfellow M (1979) Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47:17–22

    Article  Google Scholar 

  25. Tindall BJ (1990) A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130

    Article  CAS  Google Scholar 

  26. Tindall BJ (1990) Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202

    Article  CAS  Google Scholar 

  27. Cui XL, Mao PH, Zeng M, Li WJ, Zhang LP et al (2001) Streptomonospora salina gen. nov., sp. nov., a new member of the family Nocardiopsaceae. Int J Syst Evol Microbiol 51:357–363

    Article  CAS  PubMed  Google Scholar 

  28. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  31. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  32. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  33. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  34. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kimura MA (1980) Simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  36. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  37. Lee I, Ouk Kim Y, Park SC, Chun J (2016) OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100–1103

    Article  CAS  PubMed  Google Scholar 

  38. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 37:463–464

    Article  Google Scholar 

  40. Meier-Kolthoff JP, Göer M, Sprör C, Klenk HP (2013) When should a DDH experiment be mandatory in microbial taxonomy? Arch Microbiol 195:413–418

    Article  CAS  PubMed  Google Scholar 

  41. Kanehisa M, Sato Y, Morishima K (2016) BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 428:726–731

    Article  CAS  PubMed  Google Scholar 

  42. dos Santos FN, Hayashi Sant’Anna F, Massena Reis V, Ambrosini A, Gazolla Volpiano C et al (2020) Genome-based reclassification of Azospirillum brasilense Sp245 as the type strain of Azospirillum baldaniorum sp. nov. Int J Syst Evol Microbiol 70:6203–6212

    Article  Google Scholar 

  43. Lin SY, Liu YC, Hameed A, Hsu YH, Lai WA et al (2013) Azospirillum fermentarium sp. nov., a nitrogen-fixing species isolated from a fermenter. Int J Sys Evol Microbiol 63:3762–3768

    Article  CAS  Google Scholar 

  44. Tikhonova EN, Grouzdev DS, Kravchenko IK (2019) Azospirillum palustre sp. nov., a methylotrophic nitrogen-fixing species isolated from raised bog. Int J Syst Evol Microbiol 69:2787–2793

    Article  CAS  PubMed  Google Scholar 

  45. Yang YZ, Zhang RR, Feng J, Wang C, Chen JF (2019) Azospirillum griseum sp. nov., isolated from lakewater. Int J Syst Evol Microbiol 69:3676–3681

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by National Natural Science Foundation of China (NSFC), grant number 31660001, 31660089, 31660042 and 31960220, and the Major Science and Technology Projects of Yunnan Province (digitalization, development and application of biotic resource), grant number 202002AA100007.

Funding

Natural Science Foundation of China, 31660001,Yong-Xia Wang, 31660089, Xiao-Long Cui, 31660042, Wei Xiao, 31960220, Wei-Hong Liu

Author information

Authors and Affiliations

Authors

Contributions

Xu, CH and Zhao, YT performed the experiments and wrote the manuscript; Li, CP, Xiao, W and Liu, WH analyzed the data and designed the study; Cui, XL and Wang YX guided the experiments and revised the manuscript.

Corresponding author

Correspondence to Yong-Xia Wang.

Ethics declarations

Conflicts of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The 16S rRNA gene and the genome sequences of strain YIM DDC1T have been deposited in the GenBank/EMBL/DDBJ database under the accession numbers MW463421 and JAEPIV000000000, respectively.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1838 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, CH., Chen, G., Liu, Y. et al. Azospirillum Aestuarii sp. nov., a Novel Nitrogen-Fixting and Aerobic Denitrifying Bacteria Isolated from an Estuary of a Freshwater River. Curr Microbiol 80, 113 (2023). https://doi.org/10.1007/s00284-023-03213-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03213-3

Navigation