Skip to main content

Advertisement

Log in

Glucose-Induced Enhanced Virulence in Strains of Multidrug-Resistant Pseudomonas aeruginosa Isolated from Diabetic Patients

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa is known for its metabolic versatility and uses a variety of substrates; interestingly, glucose is not the favored carbon source. Although glucose is not readily utilized by them, there is a possibility that the increased susceptibility of diabetics to infections with P. aeruginosa is related to the effect of glucose on the expression of virulence genes. The curiosity in understanding the effect of glucose on virulence gene expression in P. aeruginosa and the lacuna of studies in this field prompted us to undertake the current investigation. It included the quantification of various virulence factors and their gene expression upon supplementation with glucose in clinical MDR P. aeruginosa isolates recovered from diabetics. Interestingly, the study observed a remarkable difference in the virulence attributes in the isolates with and without glucose supplementation. External glucose was found to be modulating the QS gene expression, thus altering the elaboration of other virulence factors. Variations in the gene expressions induced by glucose partly explain the increased susceptibility of diabetic patients to P. aeruginosa infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All relevant data are made available in the manuscript.

Code Availability

Not applicable.

References

  1. Chen T, Xu Y, Xu W et al (2020) Hypertonic glucose inhibits growth and attenuates virulence factors of multidrug-resistant Pseudomonas aeruginosa. BMC Microbiol 20:1–10. https://doi.org/10.1186/s12866-020-01889-2

    Article  CAS  Google Scholar 

  2. Grant SS, Hung TD (2013) Persistent bacterial infections, antibiotic tolerance, and the oxidative stress response. Virulence 4:273–283. https://doi.org/10.4161/viru.23987

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chai W, Wang Y, Jiao F, Wu Y, Wang S (2020) A severe diabetic foot ulcer with intermediate cuneiform displacement and multidrug-resistant Pseudomonas aeruginosa infection: a rare case report. Front Med 7:131. https://doi.org/10.3389/fmed.2020.00131

    Article  Google Scholar 

  4. Suresh S, Alva PP, Premanath R (2021) Modulation of quorum sensing-associated virulence in bacteria: carbohydrate as a key factor. Arch Microbiol 203:1881–1890. https://doi.org/10.1007/s00203-021-02235-4

    Article  CAS  PubMed  Google Scholar 

  5. Moradali MF, Ghods S, Rehm BH (2017) Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect 7:39. https://doi.org/10.3389/fcimb.2017.00039

    Article  CAS  Google Scholar 

  6. Nelson RK, Poroyko V, Morowitz MJ, Liu D, Alverdy JC (2013) Effect of dietary monosaccharides on Pseudomonas aeruginosa virulence. Surg Infect 14:35–42. https://doi.org/10.1089/sur.2011.063

    Article  Google Scholar 

  7. Raneri M, Pinatel E, Peano C, Rampioni G, Leoni L, Bianconi I et al (2018) Pseudomonas aeruginosa mutants defective in glucose uptake have pleiotropic phenotype and altered virulence in non-mammal infection models. Sci Rep 8:1–15. https://doi.org/10.1038/s41598-018-35087-y

    Article  CAS  Google Scholar 

  8. She P, Wang Y, Liu Y, Tan F, Chen L, Luo Z, Wu Y (2019) Effects of exogenous glucose on Pseudomonas aeruginosa biofilm formation and antibiotic resistance. Microbiologyopen 8(12):e933. https://doi.org/10.1002/mbo3.933

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dolan SK, Kohlstedt M, Trigg S, Vallejo Ramirez P, Kaminski CF, Wittmann C, Welch M (2020) Contextual flexibility in Pseudomonas aeruginosa central carbon metabolism during growth in single carbon sources. MBio 11:e02684-e2719. https://doi.org/10.1128/mBio.02684-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Garcia M, Pujol A, Ruzo A, Riu E, Ruberte J, Arbos A, Serafín A et al (2009) Phosphofructo-1-kinase deficiency leads to a severe cardiac and hematological disorder in addition to skeletal muscle glycogenosis. PLoS Genet 5:8. https://doi.org/10.1371/journal.pgen.1000615

    Article  CAS  Google Scholar 

  11. Chaparro JM, Badri DV, Bakker MG, Sugiyama A, Manter DK, Vivanco JM (2013) Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS ONE 8:e55731. https://doi.org/10.1371/annotation/51142aed-2d94-4195-8a8a-9cb24b3c733b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rojo F (2010) Carbon catabolite repression in Pseudomonas: optimizing metabolic versatility and interactions with the environment. FEMS Microbiol Rev. https://doi.org/10.1111/j.1574-6976.2010.00218.x

    Article  PubMed  Google Scholar 

  13. Ferrando M, van Baarle P, Orru G, Piga R, Bongers RS, Wels M et al (2014) Carbohydrate availability regulates virulence gene expression in Streptococcus suis. PLoS ONE 9:e89334. https://doi.org/10.1371/journal.pone.0089334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Suresh S, Prithvisagar KS, Kumar BK, Premanath R (2022) Unravelling the distinctive virulence traits and clonal relationship among the Pseudomonas aeruginosa isolates from diabetic patients. J Pure ApplMicrobiol 16:1893–1908. https://doi.org/10.22207/JPAM.16.3.37

    Article  Google Scholar 

  15. Murray TS, Ledizet M, Kazmierczak BI (2010) Swarming motility, secretion of type 3 effectors and biofilm formation phenotypes exhibited within a large cohort of Pseudomonas aeruginosa clinical isolates. J Med Microbiol 59:511–520. https://doi.org/10.1099/jmm.0.017715-019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Essar DW, LE Eberly E, Hadero A, Crawford IP (1990) Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications. J Bacteriol 172:884–900. https://doi.org/10.1128/jb.172.2.884-900.199020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Arora NK, Verma M (2017) Modified microplate method for rapid and efficient estimation of siderophore produced by bacteria. 3 Biotech 7:381. https://doi.org/10.1007/s13205-017-1008-y22

    Article  PubMed  PubMed Central  Google Scholar 

  18. O’Toole GA, Kolter R (1998) Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28:449–461. https://doi.org/10.1046/j.1365-2958.1998.00797.x23

    Article  PubMed  Google Scholar 

  19. Percival SL (2014) Wounds and infection. Biofilms in infection prevention and control. Elsevier, Amsterdam, pp 127–139. https://doi.org/10.1016/B978-0-12-397043-5.00008-624

    Chapter  Google Scholar 

  20. Murachi T (1976) Bromelain enzymes. Methods Enzymol 45:475–485. https://doi.org/10.1016/S0076-6879(76)45042-5

    Article  CAS  PubMed  Google Scholar 

  21. Pearson JP, Pesci EC, Iglewski BH (1997) Roles of Pseudomonas aeruginosa Las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 179:5756–5767. https://doi.org/10.1128/jb.179.18.5756-5767.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Alva PP, Suresh S, Nanjappa DP, James JP, Kaverikana R, Chakraborty A, Sarojini BK, Premanath R (2021) Isolation and identification of quorum sensing antagonist from Cinnamomum verum leaves against Pseudomonas aeruginosa. Life Sci 267:118878. https://doi.org/10.1016/j.lfs.2020.118878

    Article  CAS  PubMed  Google Scholar 

  23. Dumas JL, Van Delden C, Perron K, Kohler T (2006) Analysis of antibiotic resistance gene expression in Pseudomonas aeruginosa by quantitative real-time-PCR. FEMS Microbiol Lett 254:217–225. https://doi.org/10.1111/j.1574-6968.2005.00008.x

    Article  CAS  PubMed  Google Scholar 

  24. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Meth 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  25. Corona F, Martínez JL, Nikel PI (2018) The global regulator Crc orchestrates the metabolic robustness underlying oxidative stress resistance in Pseudomonas aeruginosa. Environ Microbiol. https://doi.org/10.1111/1462-2920.14471

    Article  PubMed  Google Scholar 

  26. Daddaoua A, Molina-Santiago C, de la Torre J, Krell T, Ramos JL (2014) GtrS and GltR form a two-component system: the central role of 2-ketogluconate in the expression of exotoxin A and glucose catabolic enzymes in Pseudomonas aeruginosa. Nucleic Acids Res 42:7654–7663. https://doi.org/10.1093/nar/gku496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Armitage JP, Rowbury RJ, Smith DG (1976) The role of cyclic adenosine monophosphate in the swarming phenomenon of Proteus mirabilis. Experientia 32:1266–1267. https://doi.org/10.1007/bf01953085

    Article  CAS  PubMed  Google Scholar 

  28. Lai H-C, Shu J-C, Ang S, Lai M-J, Fruta B, Lin S, Kun-Tay L, Ho S-W (1997) Effect of glucose concentration on swimming motility in enterobacteria. Biochem Biophys Res Commun 231:692–695. https://doi.org/10.1006/bbrc.1997.6169

    Article  CAS  PubMed  Google Scholar 

  29. Gatta R, Wiese A, Iwanicki A, Obuchowski M (2022) Influence of glucose on swarming and quorum sensing of Dickeyasolani. PLoS ONE 17:e0263124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Baker EH, Wood DM, Brennan AL, Clark N, Baines DL, Philips BJ (2006) Hyperglycaemia and pulmonary infection. Proc Nutr Soc 65:227–235. https://doi.org/10.1079/PNS2006499

    Article  CAS  PubMed  Google Scholar 

  31. Komori Y, Nonogaki T, Nikai T (2001) Hemorrhagic activity and muscle damaging effect of Pseudomonas aeruginosa metalloproteinase (elastase). Toxicon 39:1327–1332. https://doi.org/10.1016/s0041-0101(01)00084-8

    Article  CAS  PubMed  Google Scholar 

  32. Yang J, Zhao HL, Ran LY, Li CY, Zhang XY, Su HN et al (2015) Mechanistic insights into elastin degradation by pseudolysin, the major virulence factor of the opportunistic pathogen Pseudomonas aeruginosa. Sci Rep 5:9936. https://doi.org/10.1038/srep09936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Colvin KM, Irie Y, Tart CS, Urbano R, Whitney JC, Ryder C, Howell PL, Wozniak DJ, Parsek MR (2012) The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environ Microbiol 14:1913–1928. https://doi.org/10.1111/j.1462

    Article  CAS  PubMed  Google Scholar 

  34. Parsek MR, Singh PK (2003) Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 57:677–701. https://doi.org/10.1146/annurev.micro.57.030502.090720

    Article  CAS  PubMed  Google Scholar 

  35. Croes S, Deurenberg RH, Boumans ML, Beisser PS, Neef C, Stobberingh EE (2009) Staphylococcus aureus biofilm formation at the physiologic glucose concentration depends on the Staphylococcus aureus lineage. BMC Microbiol 9:229. https://doi.org/10.1186/1471-2180-9-229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Waldrop R, McLaren A, Calara F, McLemore R (2014) Biofilm growth has a threshold response to glucose in vitro. Clin Orthop Relat Res 472:3305–3310. https://doi.org/10.1007/s11999-014-3538-5

    Article  PubMed  PubMed Central  Google Scholar 

  37. Frank SA, Schmid-Hempel P (2008) Mechanisms of pathogenesis and the evolution of parasite virulence. J Evol Biol 21:396–404. https://doi.org/10.1111/j.1420-9101.2007.01480.x

    Article  CAS  PubMed  Google Scholar 

  38. Jackson N, Wu TZ, Adams-Sapper S, Satoorian T, Geisberg M, Murthy N, Lee L, Riley LW (2009) A multiplexed, indirect enzyme-linked immunoassay for the detection and differentiation of E. coli from other Enterobacteriaceae and Pseudomonas aeruginosa from other glucose non-fermenters. J Microbiol Methods 158:52–58. https://doi.org/10.1016/j.mimet.2019.01.014

    Article  CAS  Google Scholar 

  39. Kindu M, Derseh L, Gelaw B, Moges F (2020) Carbapenemase-producing non-glucose-fermenting gram-negative bacilli in Africa, Pseudomonas aeruginosa and Acinetobacter baumannii: a systematic review and meta-analysis. Int J Microbiol. https://doi.org/10.1155/2020/9461901

    Article  PubMed  PubMed Central  Google Scholar 

  40. Eisenberg RC, Butters SJ, Quay SC, Friedman SB (1974) Glucose uptake and phosphorylation in Pseudomonas fluorescens. J Bacteriol 120:147–153. https://doi.org/10.1128/jb.120.1.147-153.1974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Castillo-Juarez I, Lopez-Jacome LE, Soberón-Chavez G, Tomas M, Lee J, Castaneda-Tamez P, Garcia-Contreras R (2017) Exploiting quorum sensing inhibition for the control of Pseudomonas aeruginosa and Acinetobacter baumannii biofilms. Curr Top Med Chem 17:1915–1927. https://doi.org/10.2174/1568026617666170105144104

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Nitte (Deemed to be University) for all the facilities provided.

Funding

The work was supported by the Nitte University research grant (NUFR2/2018/10/27).

Author information

Authors and Affiliations

Authors

Contributions

SS performed the experiments, analyzed, and drafted the manuscript. AK did a part of the laboratory work and contributed to writing the manuscript. RP conceptualized, received funds, supervised, reviewed, and edited the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Ramya Premanath.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the author(s).

Ethical Approval

The study protocol was approved by the Central Ethics Committee of the Nitte University (NU/CEC/2019/0229).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suresh, S., Naik, A. & Premanath, R. Glucose-Induced Enhanced Virulence in Strains of Multidrug-Resistant Pseudomonas aeruginosa Isolated from Diabetic Patients. Curr Microbiol 80, 100 (2023). https://doi.org/10.1007/s00284-023-03200-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03200-8

Navigation