Skip to main content
Log in

Limnobacter parvus sp. nov., a Thiosulfate-Oxidizing Bacterium Isolated from Lake Water

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A novel bacterium, designated as strain YS8-69T, was isolated from an inland closed lake, Xinjiang Uygur Autonomous Region, PR China. Comparative analysis of the 16S rRNA gene sequence shows the strain was affiliated to the genus Limnobacter, in the family Burkholderiaceae, with the highest similarities to Limnobacter alexandrii LZ-4T (98.93%), Limnobacter thiooxidans DSM 13612T (98.55%), Limnobacter humi NBRC 111650T (97.66%), and Limnobacter litoralis KP1-19T (97.04%). Strain YS8-69T was a Gram stain-negative, strictly aerobic, rod shaped, catalase- and oxidase-positive bacterium, and growth was observed at 4–40 °C (optimum, 25 °C), pH 7.0–10.0 (optimum, pH 7.0), and 0–3% (w/v) NaCl (optimum, 0.5%). The principal fatty acids were C16:0, summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c). The sole respiratory quinone was Q-8 and total polar lipids were diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), an unidentified aminolipid (AL), two unidentified glycolipids (GL1,2), an unidentified amino phosphoglycolipid (APGL), two unidentified phospholipids (PL1,2), two unidentified aminophospholipids (APL1,2), and three unidentified lipids (L1,2,3). The average nucleotide identity (ANI) values and in silico DDH between strain YS8-69T and L. alexandrii LZ-4T, L. thiooxidans JCM 13612T, and L. humi DSM 111650T were 73.0–80.6% and 15.8–50.2%, respectively. The genome sequence showed a length of 3,162,663 bp, with 20 contigs and 51.7% of G + C content. Based on physiological, chemotaxonomic, genotypic characteristics, and phylogenetic results, we propose that strain YS8-69T represents a novel specie of the genus Limnobacter, for which the name Limnobacter parvus sp. nov. is proposed (type strain YS8-69T = MCCC 1K08015T = KCTC 92278T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence and whole-genome sequence of strain YS8-69T is OM462841 and JANKHG000000000, respectively. The whole-genome sequence project of Limnobacter humi NBRC 111650T has been deposited under the accession JANIGO000000000.

References

  1. Kelly DP, Shergill JK, Lu WP, Wood AP (1997) Oxidative metabolism of inorganic sulfur compounds by bacteria. Antonie Van Leeuwenhoek 71(1–2):95–107. https://doi.org/10.1023/a:1000135707181

    Article  CAS  Google Scholar 

  2. Spring S, Kämpfer P, Schleifer KH (2001) Limnobacter thiooxidans gen. nov., sp. nov., a novel thiosulfate-oxidizing bacterium isolated from freshwater lake sediment. Int J Int J Syst Evol Microbiol 51(4):1463–1470. https://doi.org/10.1099/00207713-51-4-1463

    Article  CAS  Google Scholar 

  3. Nguyen TM, Kim J (2017) Limnobacter humi sp. nov., a thiosulfate-oxidizing, heterotrophic bacterium isolated from humus soil, and emended description of the genus Limnobacter Spring et al 2001. J microbiol (Seoul, Korea) 55(7):508–513. https://doi.org/10.1007/s12275-017-6645-7

    Article  CAS  Google Scholar 

  4. Lu H, Sato Y, Fujimura R, Nishizawa T, Kamijo T, Ohta H (2011) Limnobacter litoralis sp. nov., a thiosulfate-oxidizing, heterotrophic bacterium isolated from a volcanic deposit, and emended description of the genus Limnobacter. Int J Syst Evol Microbiol 61(2):404–407. https://doi.org/10.1099/ijs.0.020206-0

    Article  CAS  Google Scholar 

  5. Duan Y, Jiang Z, Wu Z, Sheng Z, Yang X, Sun J, Zhang X, Yang Q, Yu X, Yan J (2020) Limnobacter alexandrii sp. nov., a thiosulfate-oxidizing, heterotrophic and EPS-bearing Burkholderiaceae isolated from cultivable phycosphere microbiota of toxic Alexandrium catenella LZT09. Antonie Van Leeuwenhoek 113(11):1689–1698. https://doi.org/10.1007/s10482-020-01473-8

    Article  CAS  Google Scholar 

  6. Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49(1):1–7. https://doi.org/10.1128/aem.49.1.1-7.1985

    Article  CAS  Google Scholar 

  7. Lane, D. J. (1991). “16S/23S rRNA sequencing,” in Proceedings of the Nucleic Acid Techniques in Bacterial Systematics, eds E. Stackebrandt and M. Goodfellow (Chichester: John Wiley and Sons), 115–175. Google Scholar

  8. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62(Pt 3):716–721. https://doi.org/10.1099/ijs.0.038075-0

    Article  CAS  Google Scholar 

  9. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680. https://doi.org/10.1093/nar/22.22.4673

    Article  CAS  Google Scholar 

  10. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16(2):111–120. https://doi.org/10.1007/BF01731581

    Article  CAS  Google Scholar 

  11. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  Google Scholar 

  12. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17(6):368–376. https://doi.org/10.1007/BF01734359

    Article  CAS  Google Scholar 

  13. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 20:406–416. https://doi.org/10.1093/sysbio/20.4.406

    Article  Google Scholar 

  14. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  Google Scholar 

  15. Lapage SP (1976) Biochemical tests for identification of medical bacteria. J Clin Pathol 29(10):958

    Article  Google Scholar 

  16. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, pp 607–654. Google Scholar

  17. Xamxidin M, Wu YH, Jian SL, Zhou YD, Wang CS, Tohty D, Xu XW (2016) Aquaticitalea lipolytica gen. nov., sp. nov., isolated from Antarctic seawater. Int J Syst Evol Microbiol 66(7):2657–2663. https://doi.org/10.1099/ijsem.0.001101

    Article  CAS  Google Scholar 

  18. Tindall BJ, Sikorski J, Smibert RA, Krieg NR (2007) Phenotypic characterization and the principles of comparative systematics. In: Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR (eds) Methods for general and molecular microbiology. ASM Press, Washington. https://doi.org/10.1128/9781555817497.ch15

    Chapter  Google Scholar 

  19. Sun C, Xu L, Yu XY, Zhao Z, Wu YH, Oren A, Wang CS, Xu XW (2018) Minwuia thermotolerans gen. nov., sp. nov., a marine bacterium forming a deep branch in the Alphaproteobacteria, and proposal of Minwuiaceae fam. No.v and Minwuiales ord. nov. Int J Syst Evol Microbiol 68(12):3856–3862. https://doi.org/10.1099/ijsem.0.003073

    Article  CAS  Google Scholar 

  20. Komagata K, Suzuki KI (1988) 4 Lipid and cell-wall analysis in bacterial systematics. Current methods for classification and identification of microorganisms. Academic press, Cambridge

    Google Scholar 

  21. Ying JJ, Fang YC, Ye YL, Wu ZC, Xu L, Han BN, Sun C (2021) Marinomonas vulgaris sp. nov., a marine bacterium isolated from seawater in a coastal intertidal zone of Zhoushan island. Archiv Microbiol 203(8):5133–5139. https://doi.org/10.1007/s00203-021-02500-6

    Article  CAS  Google Scholar 

  22. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25(7):1043–1055. https://doi.org/10.1101/gr.186072.114

    Article  CAS  Google Scholar 

  23. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Zagnitko O (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75. https://doi.org/10.1186/1471-2164-9-75

    Article  CAS  Google Scholar 

  24. Meier-Kolthoff JP, Göker M (2019) TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 10(1):2182. https://doi.org/10.1038/s41467-019-10210-3

    Article  CAS  Google Scholar 

  25. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44(D1):D457–D462. https://doi.org/10.1093/nar/gkv1070

    Article  CAS  Google Scholar 

  26. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14(1):1–14. https://doi.org/10.1186/1471-2105-14-60

    Article  Google Scholar 

  27. Lee I, Ouk Kim Y, Park SC, Chun J (2016) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66(2):1100–1103. https://doi.org/10.1099/ijsem.0.000760

    Article  CAS  Google Scholar 

  28. Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106(45):19126–19131. https://doi.org/10.1073/pnas.0906412106

    Article  Google Scholar 

  29. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Truper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 37(4):463–464

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to You-ping Xu (Zhejiang University Analysis Center of Agrobiology and Environmental Sciences) for helping to analyze the fatty acid composition.

Funding

This work was supported by the Key R&D Program of Zhejiang (2022C03010) and the Science and Technology Basic Resources Investigation Program of China (2017FY100300).

Author information

Authors and Affiliations

Authors

Contributions

MW and CC designed the experiments and guided the manuscript writing. MX was responsible for the major experiments, data analysis, and preparation of manuscripts. XPH and XWY assisted in enzymatic experiments and determination of polar lipids experiment. TW revised the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Can Chen or Min Wu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 633 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xamxidin, M., Huang, X., Yang, X. et al. Limnobacter parvus sp. nov., a Thiosulfate-Oxidizing Bacterium Isolated from Lake Water. Curr Microbiol 80, 39 (2023). https://doi.org/10.1007/s00284-022-03128-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-03128-5

Navigation