Skip to main content
Log in

Genome-based Reclassification of Paraburkholderia insulsa as a Later Heterotypic Synonym of Paraburkholderia fungorum and Proposal of Paraburkholderia terrae subsp. terrae subsp. nov. and Paraburkholderia terrae subsp. steynii subsp. nov.

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Based on the 16S rRNA gene sequences similarity of > 99.8%, the phylogeny of 88 Paraburkholderia strains was reconstructed. Further, they were subjected to overall genome-related indices (OGRI), which resulted in the identification of distinct pairs of species that were closely related. A pair consist of the type strains of Paraburkholderia insulsa and Paraburkholderia fungorum possessed a dDDH value of 87.9%, correspondingly, and the average nucleotide identity (ANI) value was 98.5%. Based on the phylogenetic analysis, OGRI and phenotypical evidence, P. insulsa was proposed as a later heterotypic synonym of P. fungorum. Furthermore, a pair comprising type strains of Paraburkholderia terrae and Paraburkholderia steynii possessed dDDH and ANI values of 71.2% and 96.6%, respectively, and difference in phenotypic traits, which supports a subspecies proposal within these taxa. Thus, the recently described Paraburkholderia steynii was proposed into two subspecies namely Paraburkholderia terrae subsp terrae subsp. nov and as Paraburkholderia terrae subsp. steynii subsp. nov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sawana A, Adeolu M, Gupta RS (2014) Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front Genet 5:429. https://doi.org/10.3389/fgene.2014.00429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Beukes CW, Palmer M, Manyaka P et al (2017) Genome data provides high support for generic boundaries In Burkholderia sensu lato. Front Microbiol 8:1154. https://doi.org/10.3389/fmicb.2017.01154

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dobritsa AP, Samadpour M (2016) Transfer of eleven species of the genus Burkholderia to the genus Paraburkholderia and proposal of Caballeronia gen. nov. to accommodate twelve species of the genera Burkholderia and Paraburkholderia. Int J Syst Evol Microbiol 66:2836–2846. https://doi.org/10.1099/ijsem.0.001065

    Article  CAS  PubMed  Google Scholar 

  4. Pratama AA, Jiménez DJ, Chen Q et al (2020) Delineation of a subgroup of the genus Paraburkholderia, including P. terrae DSM 17804T, P. hospita DSM 17164T, and four soil-isolated fungiphiles, reveals remarkable genomic and ecological features proposal for the definition of a P. hospita species cluster. Genome Biol Evol 12:325–344. https://doi.org/10.1093/gbe/evaa031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. de Los Estrada SP, Palmer M, Chávez-Ramírez B et al (2018) Whole genome analyses suggests that Burkholderia sensu lato contains two additional novel genera (Mycetohabitans gen. nov. and Trinickia gen. nov.): implications for the evolution of diazotrophy and nodulation in the Burkholderiaceae. Genes (Basel) 9:389. https://doi.org/10.3390/genes9080389

    Article  CAS  Google Scholar 

  6. Kaur C, Selvakumar G, Ganeshamurthy AN (2017) Burkholderia to Paraburkholderia: the journey of a plant-beneficial-environmental bacterium. In: Shukla P (ed) Recent Advances in Applied Microbiology. Springer, Singapore, pp 213–228

    Chapter  Google Scholar 

  7. Jin Y, Zhou J, Zhou J et al (2020) Genome-based classification of Burkholderia cepacia complex provides new insight into its taxonomic status. Biol Direct 15:6. https://doi.org/10.1186/s13062-020-0258-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dobritsa AP, Kutumbaka KK, Samadpour M (2016) Reclassification of Paraburkholderia panaciterrae (Farh et al. 2015) Dobritsa & Samadpour 2016 as a later synonym of Paraburkholderia ginsengiterrae (Farh et al. 2015) Dobritsa & Samadpour 2016. Int J Syst Evol Microbiol 66:4085–4087. https://doi.org/10.1099/ijsem.0.001314.

  9. Gao Z-Q, Zhao D-Y, Xu L et al (2016) Paraburkholderia caffeinitolerans sp. nov., a caffeine degrading species isolated from a tea plantation soil sample. Antonie Van Leeuwenhoek 109:1475–1482. https://doi.org/10.1007/s10482-016-0749-7

    Article  CAS  PubMed  Google Scholar 

  10. Jung M-Y, Kang M-S, Lee K-E et al (2019) Paraburkholderia dokdonella sp. nov., isolated from a plant from the genus Campanula. J Microbiol 57:107–112. https://doi.org/10.1007/s12275-019-8500-5

    Article  CAS  PubMed  Google Scholar 

  11. Yoon S-H, Ha S-M, Kwon S et al (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. https://doi.org/10.1099/ijsem.0.001755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. https://doi.org/10.1007/BF01731581

    Article  CAS  PubMed  Google Scholar 

  14. Meier-Kolthoff JP, Göker M (2019) TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 10:2182. https://doi.org/10.1038/s41467-019-10210-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Meier-Kolthoff JP, Hahnke RL, Petersen J et al (2014) Complete genome sequence of DSM 30083T, the type strain (U5/41T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci 9:2. https://doi.org/10.1186/1944-3277-9-2

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lee I, Kim YO, Park S-C et al (2016) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100–1103. https://doi.org/10.1099/ijsem.0.000760

    Article  CAS  PubMed  Google Scholar 

  17. Chun J, Oren A, Ventosa A et al (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68:461–466. https://doi.org/10.1099/ijsem.0.002516

    Article  CAS  PubMed  Google Scholar 

  18. Goris J, Konstantinidis KT, Klappenbach JA et al (2007) DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91. https://doi.org/10.1099/ijs.0.64483-0

    Article  CAS  PubMed  Google Scholar 

  19. Nouioui I, Lorena Carro L, García-López M et al (2018) Genome-based taxonomic classification of the phylum Actinobacteria. Front Microbiol 9:2007. https://doi.org/10.3389/fmicb.2018.02007

    Article  PubMed  PubMed Central  Google Scholar 

  20. Konstantinidis KT, Tiedje JM (2005) Towards a genome-based taxonomy for prokaryotes. J Bacteriol 187:6258–6264. https://doi.org/10.1128/JB.187.18.6258-6264.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Medlar AJ, Törönen P, Holm L (2018) AAI-profiler: fast proteome-wide exploratory analysis reveals taxonomic identity, misclassification and contamination. Nucleic Acids Res 46:W479–W485. https://doi.org/10.1093/nar/gky359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rusch A, Islam S, Savalia P et al (2015) Burkholderia insulsa sp. nov., a facultatively chemolithotrophic bacterium isolated from an arsenic-rich shallow marine hydrothermal system. Int J Syst Evol Microbiol 65:189–194. https://doi.org/10.1099/ijs.0.064477-0

    Article  CAS  PubMed  Google Scholar 

  23. Gevers D, Cohan FM, Lawrence JG et al (2005) Re-evaluating prokaryotic species. Nat Rev Microbiol 3:733–739. https://doi.org/10.1038/nrmicro1236

    Article  CAS  PubMed  Google Scholar 

  24. Auch AF, von Jan M, Klenk H-P et al (2010) Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2:117–134. https://doi.org/10.4056/sigs.531120

    Article  PubMed  PubMed Central  Google Scholar 

  25. Parker CT, Tindall BJ, Garrity GM (2019) International code of nomenclature of prokaryotes. prokaryotic code (2008 revision). Int J Sys Evol Microbiol 69:S1–S111. https://doi.org/10.1099/ijsem.0.000778

    Article  Google Scholar 

  26. Oren A, Garrity GM (2020) New combinations, synonymy and emendations can only be proposed based on names that were previously validly published. Int J Syst Evol Microbiol 70:4419–4420. https://doi.org/10.1099/ijsem.0.004326

    Article  PubMed  Google Scholar 

  27. Coenye T, Laevens S, Willems A et al (2001) Burkholderia fungorum sp. nov. and Burkholderia caledonica sp. nov., two new species isolated from the environment, animals and human clinical samples. Int J Syst Evol Microbiol 51:1099–1107. https://doi.org/10.1099/00207713-51-3-1099

    Article  CAS  PubMed  Google Scholar 

  28. Yang H-C, Im W-T, Kim KK et al (2006) Burkholderia terrae sp. nov., isolated from a forest soil. Int J Syst Evol Microbiol 56:453–457. https://doi.org/10.1099/ijs.0.63968-0

    Article  CAS  PubMed  Google Scholar 

  29. Lefort V, Desper R, Gascuel O (2015) FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 32:2798–2800. https://doi.org/10.1093/molbev/msv150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Farris JS (1972) Estimating phylogenetic trees from distance matrices. Am Nat 106:645–668

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Professor Aharon Oren for assigning heterotypic synonym and Professor W.B. Whitman for native English correction of the manuscript.

Funding

The authors received no specific grant from any funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munusamy Madhaiyan.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors. All authors have read and agreed to the published version of the manuscript.

Consent to Participate

All authors were included in the work, see Author contributions.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1631 KB)

Supplementary file2 (DOCX 1692 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhaiyan, M., Sriram, S., Kiruba, N. et al. Genome-based Reclassification of Paraburkholderia insulsa as a Later Heterotypic Synonym of Paraburkholderia fungorum and Proposal of Paraburkholderia terrae subsp. terrae subsp. nov. and Paraburkholderia terrae subsp. steynii subsp. nov.. Curr Microbiol 79, 358 (2022). https://doi.org/10.1007/s00284-022-03058-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-03058-2

Navigation