Skip to main content

Advertisement

Log in

Analysis of Blueberry Plant Rhizosphere Bacterial Diversity and Selection of Plant Growth Promoting Rhizobacteria

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Microbial metabolites in rhizosphere soil are important to plant growth. In this study, microbial diversity in blueberry plant rhizosphere soil was characterized using high-throughput amplicon sequencing technology. There were 11 bacterial phyla and three fungal phyla dominating in the soil. In addition, inorganic-phosphate-solubilizing bacteria (iPSB) in the rhizosphere soil were isolated and evaluated by molybdenum-antimony anti-coloration method. Their silicate solubilizing, auxin production, and nitrogen fixation capabilities were also determined. Eighteen iPSB in the rhizosphere soil strains were isolated and identified as Buttiauxella, Paraburkholderia and Pseudomonas. The higher phosphorus-solubilizing capacity and auxin production in blueberry rhizosphere belonged to genus Buttiauxella sp. The strains belong to genus Paraburkholderia had the same function of dissolving both phosphorus and producing auxin, as well as silicate and nitrogen fixation. The blueberry seeds incubated with the strains had higher germination rates. The results of this study could be helpful in developing the plant growth-promoting rhizobacteria (PGPR) method for enhancing soil nutrients to blueberry plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data have been submitted in the paper.

References

  1. Massarotto G, Barcellos T, Garcia CS, Brandalize AP, Moura S, Schwambach J, Henriques JAP, Roesch-Ely M (2016) Chemical characterization and cytotoxic activity of blueberry extracts (cv. Misty) cultivated in Brazil. J Food Sci 81:H2076–H2084. https://doi.org/10.1111/1750-3841.13385

    Article  PubMed  CAS  Google Scholar 

  2. Miller K, Feucht W, Schmid M (2019) Bioactive compounds of strawberry and blueberry and their potential health effects based on human intervention studies: a brief overview. Nutrients 11:1510–1520. https://doi.org/10.3390/nu11071510

    Article  PubMed Central  CAS  Google Scholar 

  3. Yurgel SN, Nearing JT, Douglas GM, Langille MG (2019) Metagenomic functional shifts to plant induced environmental changes. Front Microbiol 10:1682–1691. https://doi.org/10.3389/fmicb.2019.01682

    Article  PubMed  PubMed Central  Google Scholar 

  4. Baudoin E, Benizri E, Guckert A (2003) Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Bio Biochem 35:1183–1192. https://doi.org/10.1016/S0038-0717(03)00179-2

    Article  CAS  Google Scholar 

  5. Li LJ, Wang ST, Li XZ, Li TZ, He XH, Tan Y (2018) Effects of Pseudomonas chenduensis and biochar on cadmium availability and microbial community in the paddy soil. Sci Total Environ 11(640–641):1034–1043. https://doi.org/10.1016/j.scitotenv.2018.05.287

    Article  CAS  Google Scholar 

  6. Dennis PG, Miller AJ, Hirsch PR (2010) Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol Ecol 72:313–327. https://doi.org/10.1111/j.1574-6941.2010.00860.x

    Article  PubMed  CAS  Google Scholar 

  7. Zhang S, Wang Y, Sun L, Qiu C, Ding Y, Gu H, Wang L, Wang Z, Ding Z (2020) Organic mulching positively regulates the soil microbial communities and ecosystem functions in tea plantation. BMC Microbiol 20:103–112. https://doi.org/10.1186/s12866-020-01794-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol 156:989–996. https://doi.org/10.1104/pp.111.175448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Elser JJ, Bracken ME, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142. https://doi.org/10.1111/j.1461-0248.2007.01113.x

    Article  PubMed  Google Scholar 

  10. Kochian LV (2012) Plant nutrition: rooting for more phosphorus. Nature 488:466–477. https://doi.org/10.1038/488466a

    Article  PubMed  CAS  Google Scholar 

  11. Bianco C, Defez R (2010) Improvement of phosphate solubilization and Medicago plant yield by an indole-3-acetic acid-overproducing strain of Sinorhizobium meliloti. Appl Environ Microbiol 76:4626–4632. https://doi.org/10.1128/AEM.02756-09

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Wang XH, Wang CD, Sui JK, Liu ZY, Li Q, Ji C, Song X, Hu YR, Wang CQ, Sa R, Zhang JM, Du JF, Liu XL (2018) Isolation and characterization of phosphofungi, and screening of their plant growth-promoting activities. AMB Express 8:63–71. https://doi.org/10.1186/s13568-018-0593-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Fujii Y, Akihiro F, Syuntro H (2004) Rhizosphere soil method: a new bioassay to evaluate allelopathy in the field. 3rd Australian New Zealand Soils Conference: Novel Approaches. Australia: Charles Sturt University Press, 490–492.

  14. Wang MJ, Sun HY, Xu L, Xu ZM (2021) Bacterial diversity in tea plant (Camellia sinensis) rhizosphere soil from Qinling Mountains and its relationship with environmental elements. Plant Soil 460:403–415. https://doi.org/10.1007/s11104-020-04822-8

    Article  CAS  Google Scholar 

  15. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406e425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  Google Scholar 

  16. Cox JA (1972) Electrochemical method for the determination of phosphate in natural water. Water Research Center Research Report NO. 61. https://hdl.handle.net/2142/90404

  17. da Silva JF, da Silva TR, Escobar IEC, Fraiz ACR, Dos Santos JWM, do Nascimento TR, Dos Santos JMR, Peters SJW, de Melo RF, Signor D (2018) Screening of plant growth promotion ability among bacteria isolated from field-grown sorghum under different managements in Brazilian drylands. World J Microbiol Biotechnol 34:186–193. https://doi.org/10.1007/s11274-018-2568-7

    Article  PubMed  CAS  Google Scholar 

  18. Adrain JM, Westrop SR, Chatterton DEB, Ramskild L (2000) Silurian trilobite alpha diversity and the end-Ordovician mass extinction. Paleobiology 26:625–646. https://www.jstor.org/stable/2666103

  19. Chao A (1984) Non-parametric estimation of the number of classes in a population. Scand J Stat 11:265–270

    Google Scholar 

  20. Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Philos Trans R Soc Lond B Biol Sci 345:101–118. https://doi.org/10.1098/rstb.1994.0091

    Article  PubMed  CAS  Google Scholar 

  21. Camp WH (1945) The North American blueberries with notes on other groups of vacciniaceae. Brittonia 5:203–275. https://doi.org/10.2307/2804880

    Article  Google Scholar 

  22. Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A (2015) The importance of the microbiome of the plant holobiont. New Phytol 206:1196–1206. https://doi.org/10.3389/fmicb.2014.00491

    Article  PubMed  Google Scholar 

  23. Yurgel SN, Douglas GM, Comeau AM, Mammoliti M, Dusault A, Percival D, Langille MGI (2017) Variation in bacterial and eukaryotic communities associated with natural and managed wild blueberry habitats. Phytobiomes 1:102–113. https://doi.org/10.1094/PBIOMES-03-17-0012-R

    Article  Google Scholar 

  24. Yurgel SN, Douglas GM, Dusault A, Percival D, Langille MG (2018) Dissecting community structure in wild blueberry root and soil microbiome. Front Microbiol 9:1187–1196. https://doi.org/10.3389/fmicb.2018.01187

    Article  PubMed  PubMed Central  Google Scholar 

  25. Li J, Mavrodi OV, Hou J, Blackmon C, Babiker EM, Mavrodi DV (2020) Comparative Analysis of Rhizosphere Microbiomes of Southern Highbush Blueberry (Vaccinium corymbosum L.), Darrow's Blueberry (V. darrowii Camp), and Rabbiteye Blueberry (V. virgatum Aiton). Front Microbiol 11:370. https://doi.org/10.3389/fmicb.2020.00370

  26. Pester M, Schleper C, Wagne M (2011) The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Curr Opin Microbiol 14:300–306. https://doi.org/10.1016/j.mib.2011.04.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Wang J, Shi X, Zheng C, Suter H, Huang Z (2021) Different responses of soil bacterial and fungal communities to nitrogen deposition in a subtropical forest. Sci Total Environ 10;755(Pt 1):142449. https://doi.org/10.1016/j.scitotenv.2020.142449

  28. Ji M, van Dorst J, Bissett A, Brown MV, Palmer AS, Snape I (2016) Microbial diversity at Mitchell Peninsula, eastern Antarctica: a potential biodiversity “hotspot.” Polar Biol 39:237–249. https://doi.org/10.1007/s00300-015-1776-y

    Article  Google Scholar 

  29. Holland-Moritz H, Stuart J, Lewis LR, Miller S, Mack MC, McDaniel SF, Fierer N (2018) Novel bacterial lineages associated with boreal moss species. Environ Microbiol 20:2625–2638

    Article  PubMed  CAS  Google Scholar 

  30. Ward LM, Cardona T, Holland-Moritz H (2019) Evolutionary implications of anoxygenic phototrophy in the bacterial phylum candidatus Eremiobacterota (WPS-2). Front Microbiol 10:1658–1668. https://doi.org/10.3389/fmicb.2019.01658

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gu Y, Wang Y, Wang P, Wang C, Ma J, Yang X, Ma D, Li M (2020) Study on the diversity of fungal and bacterial communities in continuous cropping fields of Chinese chives (Allium tuberosum). Biomed Res Int 2020:3589758. https://doi.org/10.1155/2020/3589758

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Wang R, Cao B, Sun Q, Song L (2020) Response of grass interplanting on bacterial and fungal communities in a jujube orchard in Ningxia, northwest China. Heliyon 6:e03489. https://doi.org/10.1016/j.heliyon.2020.e03489

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Cline LC, ZaK DR (2015) Soil microbial communities are shaped by plant-driven changes in resource availability during secondary succession. Ecology 96:3374–3385. https://doi.org/10.1890/15-0184.1

    Article  PubMed  Google Scholar 

  34. Ma Z, Zhao W, Zhao C, Wang D, Liu M, Li D, Liu Q (2018) Plants regulate the effects of experimental warming on the soil microbial community in an alpine scrub ecosystem. PLoS ONE 13:e0195079. https://doi.org/10.1371/journal.pone.0195079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Hancock JF (2006) Highbush blueberry breeders. HortScience 41:20–21

    Article  Google Scholar 

  36. Cardinale M, Grube M, Erlacher A, Quehenberger J, Berg G (2015) Bacterial networks and co-occurrence relationships in the lettuce root microbiota. Environ Microbiol 17:239–252. https://doi.org/10.1111/1462-2920.12686

    Article  PubMed  CAS  Google Scholar 

  37. Perez-Jaramillo JE, Carrion VJ, De Hollander M, Raaijmakers JM (2018) The wild side of plant microbiomes. Microbiome 6:143. https://doi.org/10.1186/s40168-018-0519-z

    Article  PubMed  PubMed Central  Google Scholar 

  38. Harris SL, Pelaez CA, Shank EA (2019) Monitoring bacterial colonization and maintenance on Arabidopsis thaliana roots in a floating hydroponic system. J Vis Exp 5:147–158. https://doi.org/10.3791/59517

    Article  Google Scholar 

  39. Kaur G, Reddy MS (2015) Effects of phosphate-solubilizing bacteria, rock phosphate and chemical fertilizers on maize–wheat cropping cycle and economics. Pedosphere 25:428–437. https://doi.org/10.1016/S1002-0160(15)30010-2

    Article  CAS  Google Scholar 

  40. Gao ZH, Ruan SL, Huang YX, Lv YY, Qiu LH (2019) Paraburkholderia phosphatilytica sp. nov., a phosphate-solubilizing bacterium isolated from forest soil. Int J Syst Evol Microbiol 69:196–202. https://doi.org/10.1099/ijsem.0.003129

    Article  PubMed  CAS  Google Scholar 

  41. Tang A, Haruna AO, Majid NMA, Jalloh MB (2020) Effects of selected functional bacteria on maize growth and nutrient use efficiency. Microorganisms 8:854–861. https://doi.org/10.3390/microorganisms8060854

    Article  PubMed Central  CAS  Google Scholar 

  42. Ferragut C, Izard D, Gavini F, Lefebvre B, Leclerc H (1981) Buttiauxella, a new genus of the family Enterobacteriaceae. Zbl Bakt Mik Hyg 2:33–44. https://doi.org/10.1016/S0721-9571(81)80016-65

    Article  Google Scholar 

  43. Müller HE, Brenner DJ, Fanning GR, Grimont PAD, Kämpfer P (1996) Emended description of Buttiauxella agrestis with recognition of six new species of Buttiauxella and two new species of Kluyvera: Buttiauxella ferragutiae sp. nov., Buttiauxella gaviniae sp. nov., Buttiauxella brennerae sp. nov., Buttiauxella izardii sp. nov., Buttiauxella noackiae sp. nov., Buttiauxella warmboldiae sp. nov., Kluyvera cochleae sp. nov., and Kluyvera georgiana sp. nov. Int J Syst Evol Microbiol 46:50–63. https://doi.org/10.1099/00207713-46-1-50

    Article  Google Scholar 

  44. Sawana A, Adeolu M, Gupta RS (2014) Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front Genet 5:429–436. https://doi.org/10.3389/fgene.2014.00429

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Ahmad M, Zahir ZA, Nazli F, Akram F, Arshad M, Khalid M (2014) Effectiveness of halo-tolerant, auxin producing Pseudomonas and Rhizobium strains to improve osmotic stress tolerance in mung bean (Vigna radiata L.) Braz. J Microbiol 44:1341–1348. https://doi.org/10.1590/s1517-83822013000400045

    Article  Google Scholar 

  46. Alaylar B, Güllüce M, Karadayi M, Isaoglu M (2019) Rapid detection of phosphate-solubilizing bacteria from agricultural areas in Erzurum. Curr Microbiol 76:804–809. https://doi.org/10.1007/s00284-019-01688-7

    Article  PubMed  CAS  Google Scholar 

  47. Fox AR, Soto G, Valverde C, Russo D, Lagares JA, Zorreguieta A, Alleva K, Pascuan C, Frare R, Mercado-Blanco J, Dixon R, Ayub ND (2016) Major cereal crops benefit from biological nitrogen fixation when inoculated with the nitrogen-fixing bacterium Pseudomonas protegens Pf-5 X940. Environ Microbiol 18:3522–3534. https://doi.org/10.1111/1462-2920.13376

    Article  PubMed  CAS  Google Scholar 

  48. Dong X, Lv L, Wang WJ, Liu YZ, Yin CH, Xu QQ, Yan H, Fu JX, Liu XL (2019) Differences in distribution of potassium-solubilizing bacteria in forest and plantation soils in Myanmar. J Environ Res Public Health 16:700–710. https://doi.org/10.3390/ijerph16050700

    Article  CAS  Google Scholar 

  49. Debnath SC, Goyali CJ (2020) In vitro propagation and variation of antioxidant properties in Micropropagated Vaccinium berry plants-a review. Molecules 25:788–794. https://doi.org/10.1016/S0038-0717(03)00179-2

    Article  PubMed Central  CAS  Google Scholar 

  50. Abbas F, Hammad HM, Ishaq W, Farooque AA, Bakhat HF, Zia Z, Fahad S, Farhad W, Cerdà A (2020) A review of soil carbon dynamics resulting from agricultural practices. J Environ Manag 268:110319–111329. https://doi.org/10.1016/j.jenvman.2020.110319

    Article  CAS  Google Scholar 

  51. Wang HH, Ren TB, Müller K, Van Zwieten L, Wang HL, Feng HL, Xu CS, Yun F, Ji XM, Yin QY, Shi HZ, Liu GS (2021) Soil type regulates carbon and nitrogen stoichiometry and mineralization following biochar or nitrogen addition. Sci Total Environ 753:141645. https://doi.org/10.1016/j.scitotenv.2020.141645

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This study was supported by the Foundation of Young Scientist Empowerment Project of Shaanxi Association of Science and Technology (20200206), Natural Science Basic Research Program of Shaanxi (2021JQ-755), and the Foundation of Shaanxi University of Technology (SLG1809), China.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by MW, HS and ZX. The first draft of the manuscript was written by MW and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.”

Corresponding author

Correspondence to Mengjiao Wang.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Figs. 6 and 7

Fig. 6
figure 6

Alpha diversity of microorganism in the rhizosphere soil of studied blueberry species. A Shannon indices of bacteria in soil samples; B Simpson indices of bacteria in soil samples; C Shannon indices of fungus in soil samples; D Simpson indices of fungus in soil samples

Fig. 7
figure 7

Typical phosphorus decomposition halos by iPSB strains isolated from blueberry plant rhizosphere soils

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Sun, H. & Xu, Z. Analysis of Blueberry Plant Rhizosphere Bacterial Diversity and Selection of Plant Growth Promoting Rhizobacteria. Curr Microbiol 79, 331 (2022). https://doi.org/10.1007/s00284-022-03031-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-03031-z

Navigation