Skip to main content
Log in

Microbial Diversity Analyses of Fertilized Thitarodes Eggs and Soil Provide New Clues About the Occurrence of Chinese Cordyceps

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Chinese cordyceps is a well-known fungus-larva complex with medicinal and economic importance. At present the occurrence of Chinese cordyceps has not been fully illuminated. In this study, the microbial diversities of fertilized Thitarodes eggs from sites A (high occurrence rates of Chinese cordyceps), B (low occurrence rates), and C (no Chinese cordyceps) were analyzed using 16S rRNA and ITS gene-sequencing technique. The previous sequencing data of soil from the same sites were conjointly analyzed. The results showed that bacterial communities among the eggs were significantly different. The bacterial diversity and evenness were much higher on site A. Wolbachia was overwhelmingly predominant in the eggs of sites B and C, while Spiroplasma showed preference on site A. The fungal between-group differences in the eggs were not as significant as that of bacteria. Purpureocillium in Cordyceps-related families showed preference on site A. Wolbachia, Spiroplasma, and Purpureocillium were inferred to be closely related to Chinese cordyceps occurrence. Intra-kingdom and inter-kingdom network analyses suggest that closer correlations of microbial communities (especially closer fungal positive correlations) in fertilized eggs might promote Chinese cordyceps occurrence. Besides, metabolic pathway analysis showed that in fertilized eggs or soil the number of bacterial metabolic pathways with significant differences in every comparison between two sites was greater than that of fungi. Collectively, this study provides novel information about the occurrence of Chinese cordyceps, contributing to the large-scale artificial cultivation of Chinese cordyceps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Most data generated or analysed during this study are included in this published article and its supplementary information files, other data are available from the corresponding authors upon reasonable request.

Code Availability

Not available.

References

  1. Zhang Y, Li E, Wang C, Li Y, Liu X (2012) Ophiocordyceps sinensis, the flagship fungus of China: terminology, life strategy and ecology. Mycology 3(1):2–10. https://doi.org/10.1080/21501203.2011.654354

    Article  Google Scholar 

  2. Liu Y, Li QZ, Li LD, Zhou XW (2021) Immunostimulatory effects of the intracellular polysaccharides isolated from liquid culture of Ophiocordyceps sinensis (Ascomycetes) on RAW264.7 cells via the MAPK and P13K/Akt signaling pathways. J Ethnopharmacol 275:114130. https://doi.org/10.1016/j.jep.2021.114130

    Article  CAS  PubMed  Google Scholar 

  3. Zhang XM, Tang DX, Li QQ, Wang YB, Xu ZH, Li WJ, Yu H (2021) Complex microbial communities inhabiting natural Cordyceps militaris and the habitat soil and their predicted functions. Antonie Van Leeuwenhoek 114(4):465–477. https://doi.org/10.1007/s10482-021-01534-6

    Article  CAS  PubMed  Google Scholar 

  4. Wang XL, Yao YJ (2011) Host insect species of Ophiocordyceps sinensis: a review. ZooKeys 127(127):43–59. https://doi.org/10.3897/zookeys.127.802

    Article  Google Scholar 

  5. Liu Y, Shi M, Liu X, Xie J, Yang R, Ma Q, Guo L (2021) Arsenic transfer along the soil-sclerotium-stroma chain in Chinese cordyceps and the related health risk assessment. PeerJ 9:e11023. https://doi.org/10.7717/peerj.11023

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shrestha UB, Bawa KS (2014) Impact of climate change on potential distribution of Chinese caterpillar fungus (Ophiocordyceps sinensis) in Nepal Himalaya. PLoS ONE 9(9):e106405. https://doi.org/10.1371/journal.pone.0106405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. He J (2018) Harvest and trade of caterpillar mushroom (Ophiocordyceps sinensis) and the implications for sustainable use in the Tibet region of southwest China. J Ethnopharmacol 221:86–90. https://doi.org/10.1016/j.jep.2018.04.022

    Article  PubMed  Google Scholar 

  8. Li X, Liu Q, Li WJ, Li QP, Qian ZM, Liu XZ, Dong CH (2019) A breakthrough in the artificial cultivation of Chinese cordyceps on a large-scale and its impact on science, the economy, and industry. Crit Rev Biotechnol 39(2):181–191. https://doi.org/10.1080/07388551.2018.1531820

    Article  PubMed  Google Scholar 

  9. Wang J, Xue F, Huang R, Jiang Y, Sheng R (1997) Anatomy of internal structure of the larva of Napialus hunanensis Chu et Wang (Lepidoptera:Hepialidae). Acta Agric Univ Jiangxiensis 16(2):7–10. https://doi.org/10.13836/j.jjau.1997026

    Article  Google Scholar 

  10. Chen J, Gao ZX, Yu H (1991) Observation on egg’s feature and chorionic ultrastructure of swiftmoth (Hepialus obliturcus Chu ct Wang ). Zhejiang Nong Ye Da Xue Xue Bao 39:379–383

    Google Scholar 

  11. Sommer F, Bäckhed F (2013) The gut microbiota–masters of host development and physiology. Nat Rev Microbiol 11(4):227–238. https://doi.org/10.1038/nrmicro2974

    Article  CAS  PubMed  Google Scholar 

  12. Chen YQ, Wang N, Qu L, Li T, Zhang W (2001) Determination of the anamorph of Cordyceps sinensis inferred from the analysis of the ribosomal DNA internal transcribed spacers and 5.8S rDNA. Biochem Syst Ecol 29(6):597–607. https://doi.org/10.1016/s0305-1978(00)00100-9

    Article  CAS  PubMed  Google Scholar 

  13. Liu XJ, Guo YL, Yu YX, Zeng WJM (1989) Isolation and identification of the anamorphic state of Cordyceps sinensis (Berk.) Sacc. Acta Mycol Sin 8:35–40

    Google Scholar 

  14. Rong L, Li G, Zhang Y, Xiao Y, Qiao Y, Yang M, Wei L, Bi H, Gao T (2021) Structure and immunomodulatory activity of a water-soluble α-glucan from Hirsutella sinensis mycelia. Int J Biol Macromol 189:857–868. https://doi.org/10.1016/j.ijbiomac.2021.08.185

    Article  CAS  PubMed  Google Scholar 

  15. Li YL, Yao YS, Zhang ZH, Liu X, Xu HF, Ma SL, Wu ZM, Zhu JS (2016) Synergy of fungal complexes isolated from the intestines of Hepialus lagii larvae in increasing infection potency. J Fungal Res 14(2):96–112. https://doi.org/10.13341/j.jfr.2014.1067

    Article  Google Scholar 

  16. Zhang Y (2016) Studies on the relationship between the strains related to Ophiocordyceps and Hirsutella sinensis. Dissertation, Lanzhou Jiaotong University

  17. Shao JL, Lai B, Jiang W, Wang JT, Hong YH, Chen FB, Tan SQ, Guo LX (2019) Diversity and co-occurrence patterns of soil bacterial and fungal communities of Chinese Cordyceps habitats at Shergyla Mountain, Tibet: implications for the occurrence. Microorganisms 7(9):284. https://doi.org/10.3390/microorganisms7090284

    Article  CAS  PubMed Central  Google Scholar 

  18. Guo LX, Hong YH, Zhou QZ, Zhu Q, Xu XM, Wang JH (2017) Fungus-larva relation in the formation of Cordyceps sinensis as revealed by stable carbon isotope analysis. Sci Rep 7(1):7789. https://doi.org/10.1038/s41598-018-23242-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guo LX, Xu XM, Liang FR, Yuan JP, Peng J, Wu CF, Wang JH (2015) Morphological observations and fatty acid composition of indoor-cultivated Cordyceps sinensis at a high-altitude laboratory on Sejila Mountain, Tibet. PLoS ONE 10(5):e0126095. https://doi.org/10.1371/journal.pone.0126095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liang Y, Hong Y, Mai Z, Zhu Q, Guo L (2019) Internal and external microbial community of the Thitarodes moth, the host of Ophiocordyceps sinensis. Microorganisms 7(11):517. https://doi.org/10.3390/microorganisms7110517

    Article  CAS  PubMed Central  Google Scholar 

  21. Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, Huttenhower C, Langille MGI (2020) PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 38(6):685–688. https://doi.org/10.1038/s41587-020-0548-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zheng P, Xia YL, Zhang SW, Wang CS (2013) Genetics of Cordyceps and related fungi. Appl Microbiol Biotechnol 97(7):2797–2804. https://doi.org/10.1007/s00253-013-4771-7

    Article  CAS  PubMed  Google Scholar 

  23. Li Y, Wang XL, Jiao L, Jiang Y, Li H, Jiang SP, Lhosumtseiring N, Fu SZ, Dong CH, Zhan Y (2011) A survey of the geographic distribution of Ophiocordyceps sinensis. J Microbiol 49(6):913–919. https://doi.org/10.1007/s12275-011-1193-z

    Article  PubMed  Google Scholar 

  24. Zhang ZH, Ma SL, Xu HF, Liu X, Li YL (2009) Analysis of change of microbial flora in intestine channel of Hepialus larva which was host of Cordyceps sinensis in Qinghai Province. Chin Qinghai J Anim Vet Sci 39(6):17–19

    Google Scholar 

  25. Liu G, Zheng X, Long H, Rao Z, Cao L, Han R (2021) Gut bacterial and fungal communities of the wild and laboratory-reared Thitarodes larvae, host of the Chinese medicinal fungus Ophiocordyceps sinensis on Tibetan Plateau. Insects 12(4):327. https://doi.org/10.3390/insects12040327

    Article  PubMed  PubMed Central  Google Scholar 

  26. de Menezes AB, Richardson AE, Thrall PH (2017) Linking fungal-bacterial co-occurrences to soil ecosystem function. Curr Opin Microbiol 37:135–141. https://doi.org/10.1016/j.mib.2017.06.006

    Article  PubMed  Google Scholar 

  27. Liang ZQ, Han YF, Liang JD, Dong X, Du W (2010) Issues of concern in the studies of Ophiocordyceps sinensis. Microbiology China 37:1692–1697

    Google Scholar 

  28. Saghrouni F, Saidi W, Ben Said Z, Gheith S, Ben Said M, Ranque S, Denguezli M (2013) Cutaneous hyalohyphomycosis caused by Purpureocillium lilacinum in an immunocompetent patient: case report and review. Med Mycol 51(6):664–668. https://doi.org/10.3109/13693786.2012.757656

    Article  PubMed  Google Scholar 

  29. Silva SD, Carneiro R, Faria M, Souza DA, Monnerat RG, Lopes RB (2017) Evaluation of Pochonia chlamydosporia and Purpureocillium lilacinum for suppression of Meloidogyne enterolobii on tomato and banana. J Nematol 49(1):77–85. https://doi.org/10.21307/jofnem-2017-047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen W, Hu Q (2021) Secondary metabolites of Purpureocillium lilacinum. Molecules 27(1):18. https://doi.org/10.3390/molecules27010018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mikami Y, Yazawa K, Fukushima K, Arai T, Udagawa S, Samson RA (1989) Paecilotoxin production in clinical or terrestrial isolates of Paecilomyces lilacinus strains. Mycopathologia 108(3):195–199. https://doi.org/10.1007/bf00436225

    Article  CAS  PubMed  Google Scholar 

  32. Eberhard W, Pacheco-Esquivel J, Carrasco-Rueda F, Christopher Y, Gonzalez C, Ramos D, Urbina H, Blackwell M (2014) Zombie bugs? The fungus Purpureocillium cf. lilacinum may manipulate the behavior of its host bug Edessa rufomarginata. Mycologia 106(6):1065–1072. https://doi.org/10.3852/13-264

    Article  PubMed  Google Scholar 

  33. Zhong X, Peng QY, Li SS, Chen H, Sun HX, Zhang GR, Liu X (2014) Detection of Ophiocordyceps sinensis in the roots of plants in alpine meadows by nested-touchdown polymerase chain reaction. Fungal Biol 118(4):359–363. https://doi.org/10.1016/j.funbio.2013.12.005

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Y, Xu L, Zhang S, Liu X, An Z, Wang M, Guo Y (2009) Genetic diversity of Ophiocordyceps sinensis, a medicinal fungus endemic to the Tibetan Plateau: implications for its evolution and conservation. BMC Evol Biol 9:290. https://doi.org/10.1186/1471-2148-9-290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lei W, Zhang G, Peng Q, Liu X (2015) Development of Ophiocordyceps sinensis through plant-mediated interkingdom host colonization. Int J Mol Sci 16(8):17482–17493. https://doi.org/10.3390/ijms160817482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu Y, Wang XY, Gao ZT, Han JP, Xiang L (2017) Detection of Ophiocordyceps sinensis and its common adulterates using species-specific primers. Front Microbiol 8:1179. https://doi.org/10.3389/fmicb.2017.01179

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sung GH, Hywel-Jones NL, Sung JM, Luangsa-Ard JJ, Shrestha B, Spatafora JW (2007) Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud Mycol 57:5–59. https://doi.org/10.3114/sim.2007.57.01

    Article  PubMed  PubMed Central  Google Scholar 

  38. Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6(10):741–751. https://doi.org/10.1038/nrmicro1969

    Article  CAS  PubMed  Google Scholar 

  39. Teixeira L, Ferreira A, Ashburner M (2008) The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol 6(12):e2. https://doi.org/10.1371/journal.pbio.1000002

    Article  CAS  PubMed  Google Scholar 

  40. Zug R, Hammerstein P (2015) Wolbachia and the insect immune system: what reactive oxygen species can tell us about the mechanisms of Wolbachia-host interactions. Front Microbiol 6:1201. https://doi.org/10.3389/fmicb.2015.01201

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zug R, Hammerstein P (2015) Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts. Biol Rev Camb Philos Soc 90(1):89–111. https://doi.org/10.1111/brv.12098

    Article  PubMed  Google Scholar 

  42. Lu P, Bian G, Pan X, Xi Z (2012) Wolbachia induces density-dependent inhibition to dengue virus in mosquito cells. PLoS Negl Trop Dis 6(7):e1754. https://doi.org/10.1371/journal.pntd.0001754

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tabata J, Hattori Y, Sakamoto H, Yukuhiro F, Fujii T, Kugimiya S, Mochizuki A, Ishikawa Y, Kageyama D (2011) Male killing and incomplete inheritance of a novel Spiroplasma in the moth Ostrinia zaguliaevi. Microb Ecol 61(2):254–263. https://doi.org/10.1007/s00248-010-9799-y

    Article  PubMed  Google Scholar 

  44. Herren JK, Lemaitre B (2011) Spiroplasma and host immunity: activation of humoral immune responses increases endosymbiont load and susceptibility to certain Gram-negative bacterial pathogens in Drosophila melanogaster. Cell Microbiol 13(9):1385–1396. https://doi.org/10.1111/j.1462-5822.2011.01627.x

    Article  CAS  PubMed  Google Scholar 

  45. Goto S, Anbutsu H, Fukatsu T (2006) Asymmetrical interactions between Wolbachia and Spiroplasma endosymbionts coexisting in the same insect host. Appl Environ Microbiol 72(7):4805–4810. https://doi.org/10.1128/aem.00416-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Ozimeks Biotech Co., Ltd. (Shenzhen, Guangdong, China) for the sequencing.

Funding

This work was supported by the National Natural Science Foundation of China (No. 81303155), the Natural Science Foundation of Guangdong Province (Nos. 2018A030313094, 2020A151501457), the Discipline Construction Project of Guangdong Medical University (No. 4SG21014G), the “Group-type” Special Supporting Project for Educational Talents in Universities (No. 4SG19057G), and the Project for Young Innovative Talents in Ordinary Higher University of Guangdong Province (No. 2018GkQNCX050).

Author information

Authors and Affiliations

Authors

Contributions

LXG conceived and designed the experiments. ZHM, YHH, CJL, and QYZ performed the experiments and analyzed the data. LXG and YHH wrote the paper. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Lian-Xian Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

The paper submission and publication have been approved by all co-authors as well as by the institutes where the work has been carried out. This statement is addressed to individuals participants in studies (https://www.springer.com/gp/editorial-policies/informed-consent).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, YH., Mai, ZH., Li, CJ. et al. Microbial Diversity Analyses of Fertilized Thitarodes Eggs and Soil Provide New Clues About the Occurrence of Chinese Cordyceps. Curr Microbiol 79, 229 (2022). https://doi.org/10.1007/s00284-022-02919-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02919-0

Navigation