Skip to main content
Log in

Biofilm Formation and Associated Gene Expression in Multidrug-Resistant Klebsiella pneumoniae Isolated from Clinical Specimens

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Biofilms reduce the bacterial growth rate, inhibit antibiotic penetration, lead to the development of persister cells and facilitate genetic exchange. The biofilm-associated Klebsiella pneumoniae infections have not been well studied, and their implications in overcoming the effects of antimicrobial therapy are yet to be fully understood. Hence this study evaluated the antibiotic resistance pattern, antibiotic resistance determinants of extended-spectrum beta-lactamase (ESBL) family. Biofilm-forming ability of seventy multidrug-resistant clinical isolates of K. pneumoniae and the biofilm-associated genes of representative biofilm formers from a tertiary care hospital were also assessed. The K. pneumoniae isolated from urine exhibited resistance towards ceftazidime, nalidixic acid and meropenem. Isolates from blood were resistant to cefuroxime. Higher rates of resistance were observed towards cefuroxime, nalidixic acid, and meropenem for the isolates from the endotracheal aspirate. Extended spectrum beta-lactamase production by CLSI’s disc diffusion-based confirmation test revealed all the K. pneumoniae to be as ESBL producers. Most of the isolates harboured the bla gene variants, blaSHV and blaTEM. Majority of the isolates were colistin sensitive. 97.1% of the K. pneumoniae produced biofilm. K. pneumoniae isolated from pus and blood produced fully established biofilms. Strong biofilm formers were sensitive to co-trimoxazole and ciprofloxacin. Moderate biofilm formers exhibited sensitivity towards meropenem and imipenem. Expression of the fimH gene was increased, while mrkD showed reduced expression among the strong biofilm formers. Moderate biofilm formers showed variable expression of the genes associated with the biofilm formation. The weak and non-biofilm formers showed reduced expression of both the fimbrial genes. Multidrug-resistant isolates produced ESBLs and formed well-established biofilms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source-wise representation of antibiotic resistance pattern of all the clinical isolates of K. pneumoniae against nine antibiotics. CIP ciprofloxacin, CAZ ceftazidime, CXM cefuroxime, C chloramphenicol, COT co-trimoxazole, CTX cefotaxime, IPM imipenem, MRP meropenem, NA nalidixic acid

Fig. 2
Fig. 3

source and the biofilm-forming ability of the clinical isolates of K. pneumoniae

Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability (Data Transparency)

Not applicable.

Code Availability (Software Application or Custom Code)

Not applicable.

References

  1. Rahamathulla MP, Harish BN, Mataseje L, Mulvey MR (2016) Carbapenem resistance mechanisms among blood isolates of Klebsiella pneumoniae and Escherichia coli. Afr J Microbiol Res 2:45–53. https://doi.org/10.5897/AJMR2015.7802

    Article  CAS  Google Scholar 

  2. Wyres KL, Holt KE (2018) Klebsiella pneumoniae as a key trafficker of drug resistance genes from environmental to clinically important bacteria. Curr Opin Microbiol 45:131–139. https://doi.org/10.1016/j.mib.2018.04.004

    Article  CAS  PubMed  Google Scholar 

  3. Jadhav S, Misra R, Gandham N, Ujagare M, Ghosh P, Angadi K, Vyawahare C (2012) Increasing incidence of multidrug resistance Klebsiella pneumoniae infections in hospital and community settings. Int J Microbiol Res 4:253–257

    Article  Google Scholar 

  4. Vuotto C, Longo F, Balice MP, Donelli G, Varaldo PE (2014) Antibiotic resistance related to biofilm formation in Klebsiella pneumoniae. Pathogens 3:743–758. https://doi.org/10.3390/pathogens3030743

    Article  PubMed  PubMed Central  Google Scholar 

  5. Aher T, Roy A, Kumar P (2012) Molecular detection of virulence genes associated with pathogenicity of Klebsiella spp. isolated from the respiratory tract of apparently healthy as well as sick goats. Isr J Vet Med 67:249–252

    Google Scholar 

  6. Bandeira M, Carvalho PA, Duarte A, Jordao L (2014) Exploring dangerous connections between Klebsiella pneumoniae biofilms and healthcare-associated infections. Pathogens 3:720–731. https://doi.org/10.3390/pathogens3030720

    Article  PubMed  PubMed Central  Google Scholar 

  7. Desai S, Sanghrajka K, Gajjar D (2019) High adhesion and increased cell death contribute to strong biofilm formation in Klebsiella pneumoniae. Pathogens 4:277

    Article  Google Scholar 

  8. Bengoechea JA, Sa Pessoa J (2019) Klebsiella pneumoniae infection biology: living to counteract host defences. FEMS Microbiol Rev 2:123–144. https://doi.org/10.3390/pathogens8040277

    Article  CAS  Google Scholar 

  9. Chen L, Wilksch JJ, Liu H, Zhang X, Torres VV, Bi W, Mandela E, Cao J, Li J, Lithgow T, Zhou T (2020) Investigation of LuxS-mediated quorum sensing in Klebsiella pneumoniae. J Med Microbiol 3:402

    Article  Google Scholar 

  10. Pal S, Verma J, Mallick S, Rastogi SK, Kumar A, Ghosh AS (2019) Absence of the glycosyltransferase WcaJ in Klebsiella pneumoniae ATCC13883 affects biofilm formation, increases polymyxin resistance and reduces murine macrophage activation. Microbiology 8:891–904. https://doi.org/10.1099/mic.0.000827

    Article  CAS  Google Scholar 

  11. Zheng JX, Lin ZW, Chen C, Chen Z, Lin FJ, Wu Y, Yang SY, Sun X, Yao WM, Li DY, Yu ZJ (2018) Biofilm formation in Klebsiella pneumoniae bacteremia strains was found to be associated with CC23 and the presence of wcaG. Front Cell Infect Microbiol 8:21. https://doi.org/10.3389/fcimb.2018.00021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. El Fertas-Aissani R, Messai Y, Alouache S, Bakour R (2013) Virulence profiles and antibiotic susceptibility patterns of Klebsiella pneumoniae strains isolated from different clinical specimens. Pathol Biol 5:209–216. https://doi.org/10.1016/j.patbio.2012.10.004

    Article  CAS  Google Scholar 

  13. Stahlhut SG, Struve C, Krogfelt KA, Reisner A (2012) Biofilm formation of Klebsiella pneumoniae on urethral catheters requires either type 1 or type 3 fimbriae. FEMS Immunol Med Microbiol 2:350–359. https://doi.org/10.1111/j.1574-695X.2012.00965.x

    Article  CAS  Google Scholar 

  14. Devanga Ragupathi NK, Muthuirulandi Sethuvel DP, Triplicane Dwarakanathan H, Murugan D, Umashankar Y, Monk PN, Karunakaran E, Veeraraghavan B (2020) The influence of biofilms on carbapenem susceptibility and patient outcome in device associated K pneumoniae infections: insights into phenotype vs genome-wide analysis and correlation. Front Microbiol 11:3220. https://doi.org/10.3389/fmicb.2020.591679

    Article  Google Scholar 

  15. Capita R, Alonso-Calleja C (2013) Antibiotic-resistant bacteria: a challenge for the food industry. Crit Rev Food Sci Nutr 1:11–48. https://doi.org/10.1080/10408398.2010.519837

    Article  CAS  Google Scholar 

  16. Yasmin T (2012) Prevalence of ESBL among Esch. coli and Klebsiella spp. in a tertiary care hospital and molecular detection of important ESBL producing genes by multiplex PCR. Mymensingh Med J

  17. Choudhury R, Panda S, Singh DV (2012) Emergence and dissemination of antibiotic resistance: a global problem. Indian J Med Microbiol 4:384. https://doi.org/10.4103/0255-0857.103756

    Article  Google Scholar 

  18. Alcántar-Curiel MD, Ledezma-Escalante CA, Jarillo-Quijada MD, Gayosso-Vázquez C, Morfín-Otero R, Rodríguez-Noriega E, Cedillo-Ramírez ML, Santos-Preciado JI, Girón JA (2018) Association of antibiotic resistance, cell adherence, and biofilm production with the endemicity of nosocomial Klebsiella pneumoniae. Biomed Res Int. https://doi.org/10.1155/2018/7012958

    Article  PubMed  PubMed Central  Google Scholar 

  19. Vasoo S, Barreto JN, Tosh PK (2015) Emerging issues in Gram-negative bacterial resistance: an update for the practicing clinician. Mayo Clin Proc 3:395–403. https://doi.org/10.1016/j.mayocp.2014.12.002

    Article  Google Scholar 

  20. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1987) Current protocols in molecular biology. Greene & Wiley, New York

    Google Scholar 

  21. Stepanovic S, Cirkovic I, Ranin L, Svabic-Vlahovic M (2004) Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface. Lett Appl Microbiol 5:428–432. https://doi.org/10.1111/j.1472-765X.2004.01513.x

    Article  Google Scholar 

  22. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C (T)) method. Methods 4:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  23. Biradar S, Roopa C (2015) Isolation and antibiogram of Klebsiella species from various clinical specimens. IJCMAS 9:991–995

    Google Scholar 

  24. Sathyavathy K, Madhusudhan BK (2015) Isolation and identification of Klebsiella species from various clinical samples at a tertiary care hospital, South India. Indian J Public Health Res Dev 10:4033–4036

    Article  Google Scholar 

  25. Gupta S, Maheshwari V, Shah R (2017) Prevalence of ESBL producing Escherichia coli and Klebsiella species among clinical isolates and their in vitro antimicrobial susceptibility pattern in a tertiary care hospital. Int J Curr Microbiol Appl Sci 6:2295–2303

    Article  Google Scholar 

  26. Papadimitriou-Olivgeris M, Fligou F, Bartzavali C, Zotou A, Spyropoulou A, Koutsileou K, Vamvakopoulou S, Sioulas N, Karamouzos V, Anastassiou ED, Spiliopoulou I (2017) Carbapenemase-producing Klebsiella pneumoniae bloodstream infection in critically ill patients: risk factors and predictors of mortality. Eur J Clin Microbiol Infect Dis 7:1125–1131. https://doi.org/10.1007/s10096-017-2899-6

    Article  CAS  Google Scholar 

  27. Varghese A, George S, Gopalakrishnan R, Mathew A (2016) Antibiotic susceptibility pattern of Klebsiella pneumoniae isolated from cases of urinary tract infection in a tertiary care setup. Evol Med Dent Sci 5:1470–1474

    Article  CAS  Google Scholar 

  28. Sharma N, Gupta AK, Walia G, Bakhshi R (2016) A retrospective study of the changing trends of antimicrobial resistance of Klebsiella pneumoniae isolated from urine samples over last 3 years (2012–2014). J Nat Sci Biol Med 7:39–42. https://doi.org/10.4103/2F0976-9668.175060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Alcántar-Curiel MD, Rosales-Reyes R, Jarillo-Quijada MD, Gayosso-Vázquez C, Fernández-Vázquez JL, Toledano-Tableros JE, Giono-Cerezo S, Garza-Villafuerte P, López-Huerta A, Vences-Vences D, Morfín-Otero R (2019) Carbapenem-resistant Acinetobacter baumannii in three tertiary care hospitals in Mexico: virulence profiles, innate immune response and clonal dissemination. Front Microbiol 10:2116. https://doi.org/10.3389/fmicb.2019.02116

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mittal S, Mamoria VP, Singla A, Bacchani D, Chaudhary P (2020) Phenotypic Detection of Metallo-β-lactamase in Carbapenem Resistant Clinical Isolates of Klebsiella pneumoniae ssp. pneumoniae at a Tertiary Care Hospital in Jaipur. JMSCR 8:2455. https://doi.org/10.18535/jmscr/v8i3.120

    Article  Google Scholar 

  31. Kar B, Sharma M, Peter A, Chetia P, Neog B, Borah A, Pati S, Bhattacharya D (2021) Prevalence and molecular characterization of β-lactamase producers and fluoroquinolone resistant clinical isolates from North East India. J Infect Public Health 14:628–637. https://doi.org/10.1016/j.jiph.2021.02.007

    Article  PubMed  Google Scholar 

  32. Geetha PV, Aishwarya KV, Mariappan S, Sekar U (2020) Fluoroquinolone resistance in clinical isolates of Klebsiella Pneumoniae. J Lab Phys 12:121–125. https://doi.org/10.1055/s-0040-1716478

    Article  CAS  Google Scholar 

  33. Sonia SJ, Afroz S, Rasheduzzaman M, Uddin KH, Shamsuzzaman SM (2020) Prevalence and antimicrobial susceptibility pattern of Klebsiella Pneumoniae isolated from various clinical specimens in a tertiary care hospital in Bangladesh. Med Today 32:95–99. https://doi.org/10.3329/medtoday.v32i2.48821

    Article  Google Scholar 

  34. Feizabadi MM, Mahamadi-Yeganeh S, Mirsalehian A, Mirafshar SM, Mahboobi M, Nili F, Yadegarinia D (2010) Genetic characterization of ESBL producing strains of Klebsiella pneumoniae from Tehran hospitals. JIDC 10:609–615. https://doi.org/10.3855/jidc.1059

    Article  Google Scholar 

  35. Sahoo RK, Das A, Gaur M, Pattanayak A, Sahoo S, Debata NK, Rahman PK, Subudhi E (2019) Genotypic validation of extended-spectrum β-lactamase and virulence factors in multidrug resistance Klebsiella pneumoniae in an Indian hospital. Pathog Glob Health 7:315–321. https://doi.org/10.1080/20477724.2019.1705020

    Article  CAS  Google Scholar 

  36. El-Badawy MF, Tawakol WM, El-Far SW, Maghrabi IA, Al-Ghamdi SA, Mansy MS, Ashour MS, Shohayeb MM (2017) Molecular identification of aminoglycoside-modifying enzymes and plasmid-mediated quinolone resistance genes among Klebsiella pneumoniae clinical isolates recovered from Egyptian patients. Int J Microbiol. https://doi.org/10.1155/2017/8050432

    Article  PubMed  PubMed Central  Google Scholar 

  37. Shams E, Firoozeh F, Moniri R, Zibaei M (2015) Prevalence of plasmid-mediated quinolone resistance genes among extended-spectrum β-Lactamase-producing Klebsiella pneumoniae human isolates in Iran. J Pathog. https://doi.org/10.1155/2015/434391

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang A, Yang Y, Lu Q, Wang Y, Chen Y, Deng L, Ding H, Deng Q, Wang L, Shen X (2008) Occurrence of qnr-positive clinical isolates in Klebsiella pneumoniae producing ESBL or AmpC-type β-lactamase from five pediatric hospitals in China. FEMS Microbiol Lett 1:112–116. https://doi.org/10.1111/j.1574-6968.2008.01163.x

    Article  CAS  Google Scholar 

  39. Cepas V, López Y, Muñoz E, Rolo D, Ardanuy C, Martí S, Xercavins M, Horcajada JP, Bosch J, Soto SM (2019) Relationship between biofilm formation and antimicrobial resistance in Gram-negative bacteria. Microb Drug Resist 1:72–79. https://doi.org/10.1089/mdr.2018.0027

    Article  CAS  Google Scholar 

  40. Nirwati H, Sinanjung K, Fahrunissa F, Wijaya F, Napitupulu S, Hati VP, Hakim MS, Meliala A, Aman AT, Nuryastuti T (2019) Biofilm formation and antibiotic resistance of Klebsiella pneumoniae isolated from clinical samples in a tertiary care hospital, Klaten, Indonesia. BMC 13:1–8. https://doi.org/10.1111/jam.13533

    Article  CAS  Google Scholar 

  41. Hassan A, Usman J, Kaleem F, Omair M, Khalid A, Iqbal M (2011) Evaluation of different detection methods of biofilm formation in the clinical isolates. Braz J Infect Dis 4:305–311. https://doi.org/10.1590/S1413-86702011000400002

    Article  Google Scholar 

  42. Seifi K, Kazemian H, Heidari H, Rezagholizadeh F, Saee Y, Shirvani F, Houri H (2016) Evaluation of biofilm formation among Klebsiella pneumoniae isolates and molecular characterization by ERIC-PCR. Jundishapur J Microbiol 1:e30682. https://doi.org/10.5812/2Fjjm.30682

    Article  Google Scholar 

  43. Yang D, Zhang Z (2008) Biofilm-forming Klebsiella pneumoniae strains have greater likelihood of producing extended-spectrum β-lactamases. J Hosp Infect 4:369–371. https://doi.org/10.1016/j.jhin.2008.02.001

    Article  CAS  Google Scholar 

  44. Mishra SK, Basukala P, Basukala O, Parajuli K, Pokhrel BM, Rijal BP (2015) Detection of biofilm production and antibiotic resistance pattern in clinical isolates from indwelling medical devices. Curr Microbiol 1:128–134. https://doi.org/10.1007/s00284-014-0694-5

    Article  CAS  Google Scholar 

  45. Türkel I, Yıldırım T, Yazgan B, Bilgin M, Başbulut E (2018) Relationship between antibiotic resistance, efflux pumps, and biofilm formation in extended-spectrum β-lactamase producing Klebsiella pneumoniae. J Chemother 6–8:354–363. https://doi.org/10.1080/1120009X.2018.1521773

    Article  Google Scholar 

  46. Subramanian P, Shanmugam N, Sivaraman U, Kumar S, Selvaraj S (2012) Antiobiotic resistance pattern of biofilm-forming uropathogens isolated from catheterised patients in Pondicherry. India Med J Aust 7:344. https://doi.org/10.4066/2FAMJ.2012.1193

    Article  Google Scholar 

  47. Mah TF, Pitts B, Pellock B, Walker GC, Stewart PS, O’Toole GA (2003) A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426(6964):306–310

    Article  CAS  Google Scholar 

  48. Zhang L, Fritsch M, Hammond L, Landreville R, Slatculescu C, Colavita A, Mah TF (2013) Identification of genes involved in Pseudomonas aeruginosa biofilm-specific resistance to antibiotics. PLoS ONE 8(4):e61625

    Article  CAS  Google Scholar 

  49. Saha A, Devi KM, Damrolien S, Krossnunpuii DKS, Sharma KT (2018) Biofilm production and its correlation with antibiotic resistance pattern among clinical isolates of Pseudomonas aeruginosa in a tertiary care hospital in north-East India. Int J Adv Med 4:964–968

    Article  Google Scholar 

  50. Vuotto C, Longo F, Pascolini C, Donelli G, Balice MP, Libori MF, Tiracchia V, Salvia A, Varaldo PE (2017) Biofilm formation and antibiotic resistance in Klebsiella pneumoniae urinary strains. J Appl Microbiol 4:1003–1018. https://doi.org/10.1111/jam.13533

    Article  CAS  Google Scholar 

  51. Clegg S, Murphy CN (2016) Epidemiology and virulence of Klebsiella pneumoniae. Mol Pathog Clin Manag 15:435–445. https://doi.org/10.1128/microbiolspec.UTI-0005-2012

    Article  CAS  Google Scholar 

  52. Murphy CN, Mortensen MS, Krogfelt KA, Clegg S (2013) Role of Klebsiella pneumoniae type 1 and type 3 fimbriae in colonizing silicone tubes implanted into the bladders of mice as a model of catheter-associated urinary tract infections. Infect Immun 8:3009–3017. https://doi.org/10.1128/IAI.00348-13

    Article  CAS  Google Scholar 

  53. Schroll C, Barken KB, Krogfelt KA, Struve C (2010) Role of type 1 and type 3 fimbriae in Klebsiella pneumoniae biofilm formation. BMC Microbiol 1:1

    Google Scholar 

  54. Tajbakhsh E, Ahmadi P, Abedpour-Dehkordi E, Arbab-Soleimani N, Khamesipour F (2016) Biofilm formation, antimicrobial susceptibility, serogroups and virulence genes of uropathogenic E. coli isolated from clinical samples in Iran. Antimicrob Resist Infect Control 1:1–8. https://doi.org/10.1186/s13756-016-0109-4

    Article  Google Scholar 

  55. Mohamed SH, Khalil MS, Mohamed MS, Mabrouk MI (2020) Prevalence of antibiotic resistance and biofilm formation in Klebsiella pneumoniae carrying fimbrial genes in Egypt. Res J Pharm Technol 7:3051–3058. https://doi.org/10.5958/0974-360X.2020.00542.9

    Article  Google Scholar 

  56. Liu Y, Liu C, Zheng W, Zhang X, Yu J, Gao Q, Hou Y, Huang X (2008) PCR detection of Klebsiella pneumoniae in infant formula based on 16S–23S internal transcribed spacer. Int J Food Microbiol 3:230–235. https://doi.org/10.1016/j.ijfoodmicro.2008.03.005

    Article  CAS  Google Scholar 

  57. BrisseS VJ (2001) Phylogenetic diversity of Klebsiella pneumoniae and Klebsiella oxytoca clinical isolates revealed by randomly amplified polymorphic DNA gyrA and parC genes sequencing and automated ribotyping. Int J Syst Evol Microbiol 51:915–924. https://doi.org/10.1099/00207713-51-3-915

    Article  Google Scholar 

  58. Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW, Steward CD, Alberti S, Bush K, Tenover FC (2008) Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother 45:1151–1161. https://doi.org/10.1128/AAC.45.4.1151-1161.2001

    Article  Google Scholar 

  59. Mahrouki S, Belhadj O, Chihi H, Mohamed BM, Celenza G, Amicosante G, Perilli M (2012) Chromosomal blaCTX-M-15 associated with ISEcp1 in Proteus mirabilis and Morganella morganii isolated at the Military Hospital of Tunis, Tunisia. J Med Microbiol 61:1286–1289. https://doi.org/10.1099/jmm.0.039487-0

    Article  CAS  PubMed  Google Scholar 

  60. Batchelor M, Hopkins K, Threlfall EJ, Clifton-Hadley FA, Stallwood AD, Davies RH (2005) blaCTX-M genes in clinical Salmonella isolates recovered from humans in England and Wales from 1992 to 2003. Antimicrob Agents Chemother 49:1319–1322. https://doi.org/10.1128/AAC.49.4.1319-1322.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhao S, White DG, Ge B, Ayers S, Friedman S, English L, Wagner D, Gaines S, Meng J (2001) Identification and characterization of integron-mediated antibiotic resistance among Shiga toxin-producing Escherichia coli isolates. Appl Environ Microbiol 67:1558–1564. https://doi.org/10.1128/AEM.67.4.1558-1564.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Robicsek A, Jacoby GA, Hooper DC (2006) The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis 6:629–640. https://doi.org/10.1016/S1473-3099(06)70599-0

    Article  CAS  PubMed  Google Scholar 

  63. Cattoir V, Poirel L, Nordmann P (2008) Plasmid-mediated quinolone resistance pump QepA2 in an Escherichia coli isolate from France. Antimicrob Agents Chemother 52:3801–3804. https://doi.org/10.1128/AAC.00638-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ritz M, Garenaux A, Berge M, Federighi M (2009) Determination of rpoA as the most suitable internal control to study stress response in C. jejuni by RT-qPCR and application to oxidative stress. J Microbiol Methods 76:196–200. https://doi.org/10.1016/j.mimet.2008.10.014

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

We would like to acknowledge the Nitte (Deemed to be University) for the Financial support received from (Grant no. NUFR1/2018/10/17), Mangalore, towards this study.

Author information

Authors and Affiliations

Authors

Contributions

PA—AM and BB. DVK—AM and GR. AR—AM and GR. ID – AM. IK – BB. IK – BB. ADS—AM and DB.

Corresponding author

Correspondence to Dharnappa Sannejal Akhila.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This study was approved by the Institutional Ethics Committee of the Madras Medical Mission, Chennai (Reg. No: ECR/140/Inst/TN/2013/RR-20).

Informed Consent

The informed consent for each patient included in the study was obtained.

Consent for Participation

The informed consent for each patient included in the study was obtained.

Consent for Publication

All the authors are aware and have no conflicts for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 51 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashwath, P., Deekshit, V.K., Rohit, A. et al. Biofilm Formation and Associated Gene Expression in Multidrug-Resistant Klebsiella pneumoniae Isolated from Clinical Specimens. Curr Microbiol 79, 73 (2022). https://doi.org/10.1007/s00284-022-02766-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02766-z

Navigation