Skip to main content

Advertisement

Log in

Occurrence, Virulence and Antimicrobial Susceptibility Profiles of Cronobacter spp. from Ready-to-Eat Foods

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Cronobacter spp. can cause foodborne diseases in infants, but Cronobacter infections in healthy adults and vulnerable people have also been reported. These bacteria have ubiquitous nature and can contaminate various foods. Therefore, we assessed the presence of Cronobacter spp. in popularly consumed ready-to-eat (RTE) food products. In the present study, 51 (15%) of the 340 RTE food samples were contaminated with Cronobacter spp The highest contamination rates were found in spices (46.7%), meat-free cig koftes (44.4%), desserts (23.3%), cereals (23.1%), doners (12.2%), and ice cream (11.1%). Phenotypic and molecular methods, including 16S rRNA, gluA, rpoB, cgcA genes, and fusA allele sequencing were tested to identify Cronobacter species. Of the 51 contaminated samples, 54 isolates were identified as C. sakazakii (n = 43), C. malonaticus (n = 7), C. muytjensii (n = 3) and C. turicensis (n = 1) using fusA analysis. These isolates were assigned to 15 different fusA alleles, two of which (191 and 192) were new alleles. Putative virulence factors such as the ompA and zpx gene, biofilms, and siderophores were detected in most of the Cronobacter isolates (> 85%). Cronobacter isolates were resistant to cephalothin (85.2%), cefoxitin (33.3%), cefotaxime (14.8%), ampicillin (11.1%), cefepime (5.6%), aztreonam (5.6%), and piperacillin (1.9%). The multidrug resistance (against three or more classes of antimicrobial agents) was 7.4%. The results indicated presence of Cronobacter spp. in RTE foods, which may be a risk to human health. It is important to adopt rigorous hygiene and sanitization practices to ensure the microbiological safety of these foods consuming without any processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Iversen C, Lehner A, Mullane N, Bidlas E, Cleenwerck I, Marugg J, Fanning S, Stephan R, Joosten, H (2007) The taxonomy of Enterobacter sakazakii: proposal of a new genus Cronobacter gen. nov. and descriptions of Cronobacter sakazakii comb. nov. Cronobacter sakazakii subsp. sakazakii, comb. nov., Cronobacter sakazakii subsp. malonaticus subsp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov. and Cronobacter genomospecies 1. BMC Evol Biol 7:64.

  2. Iversen C, Mullane N, McCardell B, Tall BD, Lehner A, Fanning S, Stephan R, Joosten H (2008) Cronobacter gen. nov., a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen. nov., comb. nov., Cronobacter malonaticus sp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov., Cronobacter genomospecies 1, and of three subspecies, Cronobacter dublinensis subsp. dublinensis subsp. nov., Cronobacter dublinensis subsp. lausannensis subsp. nov. and Cronobacter dublinensis subsp. lactaridi subsp. nov. Int J Syst Evol Microbiol 58:1442–1447

    Article  CAS  PubMed  Google Scholar 

  3. Joseph S, Cetinkaya E, Drahovske H, Levican A, Figueras MJ, Forsythe SJ (2012) Cronobacter condiment sp. nov., isolated from spiced meat and Cronobacter universalis sp.nov., a novel species designation for Cronobacter sp. genomospecies 1, recovered from a leg infection, water, and food ingredients. Int J Syst Evol Microbiol 62:1277–1283

    Article  CAS  PubMed  Google Scholar 

  4. Xu X, Li C, Qingping W, Zhang J, Huang J, Yang G (2015) Prevalence, molecular characterization, and antibiotic susceptibility of Cronobacter spp. in Chinese ready-to-eat foods. Int J Food Microbiol 204:17–23

    Article  CAS  PubMed  Google Scholar 

  5. Forsythe SJ (2018) Updates on the Cronobacter Genus. Annu Rev Food Sci Technol 9:23–44

    Article  CAS  PubMed  Google Scholar 

  6. Yong W, Guo B, Shi X, Cheng T, Chen M, Jiang X, Ye Y, Wang J, Xie G, Ding J (2018) An Investigation of an acute gastroenteritis outbreak: Cronobacter sakazakii, a potential cause of food-borne illness. Front Microbiol 9:2549

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kothary MH, McCardell BA, Frazar CD, Deer D, Tall BD (2007) Characterization of the zinc-containing metalloprotease encoded by zpx and development of a species-specific detection method for Enterobacter sakazakii. Appl Environ Microbiol 73:4142–4151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jaradat ZW, Mousa WA, Elbetieha A, Nabulsi AA, Tall BD (2014) Cronobacter spp.- opportunistic food-borne pathogens. A review of their virulence and environmental-adaptive traits. J Med Microbiol 63:1023–1037

    Article  CAS  PubMed  Google Scholar 

  9. Nair MKM, Venkitanarayanan KS (2006) Cloning and sequencing of the ompA gene of Enterobacter sakazakii and development of an ompA-targeted PCR for rapid detection of Enterobacter sakazakii in infant formula. Appl Environ Microbiol 72:2539–2546

    Article  CAS  Google Scholar 

  10. Mittal R, Wang Y, Hunter CJ, Gonzalez-Gomez I, Prasa-darao NV (2009) Brain damage in newborn rat model of meningitis by Enterobacter sakazakii: A role for outer membrane protein A. Lab Invest 89:263–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim K, Kim KP, Choi J, Lim JA, Lee J, Hwang S, Ryu S (2010) Outer membrane proteins A (OmpA) and X (OmpX) are essential for basolateral invasion of Cronobacter sakazakii. Appl Environ Microbiol 76:5188–5198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fakruddin M, Rahaman M, Ahmed MM, Hoque MM (2014) Stress tolerant virulent strains of Cronobacter sakazakii from food. J Bio Res 47:63

    Google Scholar 

  13. Iversen C, Lane M, Forsythe SJ (2004) The growth profile, thermotolerance and biofilm formation of Enterobacter sakazakii grown in infant formula milk. Lett Appl Microbiol 38:378–382

    Article  CAS  PubMed  Google Scholar 

  14. Grim CJ, Kothary MH, Gopinath G, Jarvis KG, Beaubrun JJG, McClelland M, Tall BD, Francoa AA (2012) Identification and characterization of Cronobacter iron acquisition systems. Appl Environ Microbiol 78:6035–6050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stoop B, Lehner A, Iversen C, Fanning S, Stephan R (2009) Development and evaluation of rpoB based PCR systems to differentiate the six proposed species within the genus Cronobacter. Int J Food Microbiol 136:165–168

    Article  CAS  PubMed  Google Scholar 

  16. Lehner A, Fricker-Feer C, Stephan R (2012) Identification of the recently described Cronobacter condimenti by an rpoB-gene-based PCR system. J Med Microbiol 61:1034–1035

    Article  CAS  PubMed  Google Scholar 

  17. Carter L, Lindsey LA, Grim CJ, Sathyamoorthy V, Jarvis KG, Gopinath G, Lee C, Sadowski JA, Trach L, Pava-Ripoll M, McCardell BA, Tall BD, Hu L (2013) Multiplex PCR assay targeting a diguanylate cyclase-encoding gene, cgcA, to differentiate species within the genus Cronobacter. Appl Environ Microbiol 79:734–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jackson EE, Sonbol H, Masood N, Forsythe SJ (2014) Genotypic and phenotypic characteristics of Cronobacter species, with particular attention to the newly reclassified species Cronobacter helveticus, Cronobacter pulveris, and Cronobacter zurichensis. Food Microbiol 44:226–235

    Article  CAS  PubMed  Google Scholar 

  19. Joseph S, Sonbol H, Hariri S, Desai P, McClelland M, Forsythe SJ (2012) Diversity of the Cronobacter genus as revealed by multi locus sequence typing. J Clin Microbiol 50:3031–3039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li Y, Chen Q, Zhao J, Jiang H, Lu F, Bie X, Lu Z (2014) Isolation, identification and antimicrobial resistance of Cronobacter spp. isolated from various foods in China. Food Control 37:109–114

    Article  CAS  Google Scholar 

  21. Silva JN, Vasconcellos L, Forsythe SJ, Filippis I, Brandao MLL (2019) Molecular and phenotypical characterization of Cronobacter species isolated with high occurrence from oats and linseeds. FEMS Microbiol Lett 366:1–6

    Article  CAS  Google Scholar 

  22. Chon JW, Song K, Kim SY, Hyeon JY, Seo KH (2012) Isolation and characterization of Cronobacter from desiccated foods in Korea. J Food Sci 77:M354–M358

    Article  CAS  PubMed  Google Scholar 

  23. Müller A, Hachler H, Stephan R, Lehner A (2014) Presence of AmpC betalactamases, CSA-1, CSA-2, CMA-1, and CMA-2 conferring an unusual resistance phenotype in Cronobacter sakazakii and Cronobacter malonaticus. Microb Drug Resist 20:275–280

    Article  PubMed  CAS  Google Scholar 

  24. Kilonzo-Nthenge A, Rotich E, Godwin S, Nahashon S, Chen F (2012) Prevalence and antimicrobial resistance of Cronobacter sakazakii isolated from domestic kitchens in middle Tennessee, United States. J Food Prot 75:1512–1517

    Article  CAS  PubMed  Google Scholar 

  25. Lee YD, Parka JH, Chang H (2012) Detection, antibiotic susceptibility and biofilm formation of Cronobacter spp. from various foods in Korea. Food Control 24:225–230

    Article  CAS  Google Scholar 

  26. Yao K, N’guessan KF, Zinzendorf NY, Kouassi KA, Kouassi KC, Loukou YG, Kouame PL (2016) Isolation and characterization of Cronobacter spp. from indigenous infant flours sold in public health care centres within Abidjan Côte d’Ivoire. Food Control 62:224–230

    Article  CAS  Google Scholar 

  27. Li Y, Zhang Y, Zhang L, Hu Y, Hong C, Xie A, Wu Y, Shangguan Z, Zhou B, Fang L, Mei L (2020) Prevalence and genetic characteristics of Cronobacter spp. from food and human clinical stool samples in Wenzhou, China 2008–2018. Food Microbiol 89:103432

    Article  CAS  PubMed  Google Scholar 

  28. Bhunia AK (2008) Foodborne microbial pathogens: mechanisms and pathogenesis. Springer, New York

    Google Scholar 

  29. Food and Drug Administration (FDA) (2002) Center for Food Safety and Applied Nutrition. Isolation and enumeration of Enterobacter sakazakii from dehydrated powdered infant formula (http://www.fao.org/3/a-y5502e.pdf)

  30. ISO (2006) Milk and milk products-detection of Enterobacter sakazakii. Technical specification ISO/TS 22964:2006(E) and IDF/RM 210: (E), 1st edn. ISO, Geneva

    Google Scholar 

  31. Ausubel FM, Kingston RE, Brent R, Moore DD, Seidman J, Smith JA, Struhl K (1991) Current protocol in molecular biology. Grene Publishing Associates and Wiley Interscience, New York

    Google Scholar 

  32. Hassan AA, Akineden Ö, Kress C, Estuningsih S, Schneider E, Usleber E (2007) Characterization of the gene encoding the 16S rRNA of Enterobacter sakazakii and development of a species-specific PCR method. Int J Food Microbiol 116:214–220

    Article  CAS  PubMed  Google Scholar 

  33. Lehner A, Nitzsche S, Breeuwer P, Diep B, Thelen K, Stephan R (2006) Comparison of two chromogenic media and evaluation of two molecular based identification systems for Enterobacter sakazakii detection. BMC Microbiol 6:15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Stepanovic S, Vukovic D, Dakic I, Savic B, Svabic-Vlahovic M (2000) A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods 40:175–179

    Article  CAS  PubMed  Google Scholar 

  35. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  PubMed  Google Scholar 

  36. Fiss E, Brooks GF (1991) Use of a siderophore detection medium, ethylene glycol degradation, and β-Galactosidase activity in the early presumptive differentiation of Nocardia, Rhodococcus, Streptomyces, and rapidly growing Mycobacterium species. J Clin Microbiol 29:1533–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Clinical and Laboratory Standards Institute (2014) Performance standards for antimicrobial susceptibility testing-twenty-fourth informational supplement. CLSI, Wayne

    Google Scholar 

  38. Singh N, Goel G, Raghav M (2015) Prevalence and characterization of Cronobacter spp. from various foods, medicinal plants, and environmental samples. Curr Microbiol 71:31–38

    Article  CAS  PubMed  Google Scholar 

  39. Brandao MLL, Umeda NS, Jackson E, Forsythe SJ, Filippis I (2017) Isolation, molecular and phenotypic characterization, and antibiotic susceptibility of Cronobacter spp. from Brazilian retail foods. Food Microbiol 63:129–138

    Article  CAS  PubMed  Google Scholar 

  40. Vasconcellos L, Carvalho CT, Tavares RO, Medeirosa VM, Rosasa CO, Silva JN, Lopes SMDR, Forsythe SJ, Brandao MLL (2018) Isolation, molecular and phenotypic characterization of Cronobacter spp. in ready-to-eat salads and foods from Japanese cuisine commercialized in Brazil. Food Res Int 107:353–359

    Article  CAS  PubMed  Google Scholar 

  41. Saad NM, Ewida RM (2018) Incidence of Cronobacter sakazakii in dairy-based desserts. J Adv Vet Res 8:16–18

    Google Scholar 

  42. Aksu F, Altunatmaz SS, Issa G, Aksoy A, Aksu H (2019) Prevalence of Cronobacter spp. in various foodstuffs and identification by multiplex PCR. Food Sci Technol 39:729–734

    Article  Google Scholar 

  43. Kandhai MC, Heuvelink AE, Reij MW, Beumer RR, Dijk R, van Tilburg JJHC, Schothorst MV, Gorris LGM (2010) A study into the occurrence of Cronobacter spp. in The Netherlands between 2001 and 2005. Food Control 21:1127–1136

    Article  Google Scholar 

  44. Jackson EE, Forsythe SJ (2016) Comparative study of Cronobacter identification according to phenotyping methods. BMC Microbiol 16:146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Holy O, Cruz-Cordova A, Xicohtencatl-Cortes J, Hochel I, Parra-Flores J, Petrzelova J, Facevicova K, Forsythe S, Alsonosi A (2019) Occurrence of virulence factors in Cronobacter sakazakii and Cronobacter malonaticus originated from clinical samples. Microb Pathog 127:250–256

    Article  CAS  PubMed  Google Scholar 

  46. Yan X, Gurtler J, Fratamico P, Hu J, Gunther NW, Juneja V, Huang L (2011) Comprehensive approaches to molecular biomarker discovery for detection and identification of Cronobacter spp. (Enterobacter sakazakii) and Salmonella spp. Appl Environ Microbiol 77:1833–1843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jaradat ZW, Ababneh QO, Saadoun IM, Samara NA, Rashdan AM (2009) Isolation of Cronobacter spp. (formerly Enterobacter sakazakii) from infant food, herbs and environmental samples and the subsequent identification and confirmation of the isolates using biochemical, chromogenic assays, PCR and 16S rRNA sequencing. BMC Microbiol 9:225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Schmid M, Iversen C, Gontia I, Stephan R, Hofmann A, Hartmann A, Jha B, Elberl L, Riedel K, Lehner A (2009) Evidence for a plant-associated natural habitat for Cronobacter spp. Res Microbiol 160:608–614

    Article  PubMed  Google Scholar 

  49. Ye Y, Ling N, Jiao R, Wu Q, Han Y, Gao J (2015) Effects of culture conditions on the biofilm formation of Cronobacter sakazakii strains and distribution of genes involved in biofilm formation. J Food Sci Technol 62:1–6

    CAS  Google Scholar 

  50. Baldwin A, Loughlin M, Caubilla-Barron J, Kucerova E, Manning G, Dowson C, Forsythe S (2009) Multilocus sequence typing of Cronobacter sakazakii and Cronobacter malonaticus reveals stable clonal structures with clinical significance which do not correlate with biotypes. BMC Microbiol 9:223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Stephen J. Forsythe for kindly reviewing the manuscript and providing valuable scientific advice.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or nonprofit sectors.

Author information

Authors and Affiliations

Authors

Contributions

SA conceived and designed the experiments. SA and HGE performed data acquisition and the laboratory analyses. SA and HGE contributed to interpretation of data and preparation of article draft. SA revised and edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Seza Arslan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (docx 20 kb)

Supplementary file2 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arslan, S., Ertürk, H.G. Occurrence, Virulence and Antimicrobial Susceptibility Profiles of Cronobacter spp. from Ready-to-Eat Foods. Curr Microbiol 78, 3403–3416 (2021). https://doi.org/10.1007/s00284-021-02585-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02585-8

Navigation