Skip to main content
Log in

Screening of Probiotic Lactic Acid Bacteria Isolated from Fermented Pak-Sian for Use as a Starter Culture

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The objective of this research was to evaluate the probiotic properties of lactic acid bacteria (LAB) isolated from fermented Pak-Sian, a traditional Thai food in the northeastern region of Thailand (Kalasin, Sakon Nakhon, Maha Sarakham, and Khon Kaen Provinces). A total of 61 LAB isolates isolated from selective MRS agar were screened by SDS-PAGE and identified by 16S rDNA analysis. Seventeen bacterial strains were found consisting of Pediococcus pentosaceus (6 strains) Lactiplantibacillus plantarum (5 strains), Levilactobacillus brevis (1 strain), Lactobacillus fermentum (3 strains), and Weissella cibaria (2 strains). A PH tree grouped 17 LAB strains into 5 clusters with three clusters only recorded from Sakon Nakhon Province. All strains were tested for probiotic properties. Results showed that 14 strains had the ability to resist pH 2.5 as resistant to bile salts and survive in gastric juices and the intestinal tract. LAB demonstrated antimicrobial activity against 4 pathogens: Staphylococcus aureus TISTR746, Salmonella typhimurium TISTR1472, Escherichia coli ATCC25922, and Bacillus cereus TISTR1449. Most LAB strains were resistant to all antibiotics tested, while some Lactobacillus strains were moderately susceptible to chloramphenicol, rifampicin, and ampicillin. None of the 14 strains produced biogenic amine and eight showed no hemolysis activity, indicating the safety of these strains. These 8 strains were selected to determine mucin adhesion capacity. Lactobacillus fermentum SK324 and Levilactobacillus brevis SK335 showed the highest adhesion capacity of 2.39 and 2.34%, respectively. These two strains showed promise as alternative starter cultures to improve probiotic health benefits of local fermented Pak-Sian products as a functional food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data and material are not available from the authors.

References

  1. Butel MJ (2014) Probiotics, gut microbiota and health. Med Mal Infect 44:1–8. https://doi.org/10.1016/j.medmal.2013.10.002

    Article  PubMed  Google Scholar 

  2. Holzapfel WH, Haberer P, Snel J, Schillinger U, Veld JHJH (1998) Overview of gut flora and probiotics. Int J Food Microbiol 41:85–101. https://doi.org/10.1016/50168-1605(98)00044-0

    Article  CAS  PubMed  Google Scholar 

  3. Ewaschuk JB, Dieleman LA (2006) Probiotics and prebiotics in chronic inflammatory bowel diseases. World J Gastroenterol 12(37):5941. https://doi.org/10.3748/wjg.v12.i37.5941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ooi LG, Liong MT (2010) Cholesterol-lowering effects of probiotic and prebiotics: a review of in vivo and in vitro findings. Int J Mol Sci 11:2499–2522. https://doi.org/10.3390/ijms11062499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Martins EMF, Ramos AM, Vanzela ESL, Stringheta PC, de Oliveira Pinto CL, Martins JM (2013) Products of vegetable origin: a new alternative for the consumption of probiotic bacteria. Food Res Int 51:764–770. https://doi.org/10.1016/j.foodres.2013.01.047

    Article  CAS  Google Scholar 

  6. Rivera-Espinoza Y, Gallardo-Navarro Y (2010) Non-dairy probiotic products. Food Microbiol 27:1–11. https://doi.org/10.1016/jfm.2008.06.008.Epub2008Jul1

    Article  PubMed  Google Scholar 

  7. Lee H, Yoon H, Ji Y et al (2011) Functional properties of Lactobacillus strains isolated from kimchi. Int J Food Microbiol 145:155–161. https://doi.org/10.1016/j.ijfoodmicro.2010.12.003

    Article  CAS  PubMed  Google Scholar 

  8. Yoon KY, Woodams EE, Hang YD (2004) Probiotication of tomato juice by lactic acid bacteria. J Microbiol 42:315–318

    PubMed  Google Scholar 

  9. Karasu N, Şimşek Ö, Çon AH (2010) Technological and probiotic characteristics of Lactobacillus plantarum strains isolated from traditionally produced fermented vegetables. Ann Microbiol 60:227–234. https://doi.org/10.1007/s13213-010-0031-6

    Article  CAS  Google Scholar 

  10. Lee KW, Shim JM, Park SK, Heo HJ, Kim HJ, Ham KS, Kim JH (2016) Isolation of lactic acid bacteria with probiotic potentials from kimchi, traditional Korean fermented vegetable. LWT—Food Sci Technol 71:130–137. https://doi.org/10.1016/j.lwt.2016.03.029

    Article  CAS  Google Scholar 

  11. Tanasupawat S, Komagata K (1995) Lactic acid bacteria in fermented foods in Thailand. World J Microbiol Biotechnol 11(3):253–256. https://doi.org/10.1016/j.ijfoodmicro.2009.07.016

    Article  CAS  PubMed  Google Scholar 

  12. Tanasupawat S, Daengsubha W (1983) Pediococcus species and related bacteria found in fermented foods and related materials in Thailand. J Gen Appl Microbiol 29:487–506

    Article  CAS  Google Scholar 

  13. Tanasupawat S, Ezaki T, Suzuki KI, Okada S, Komagata K, Kozaki M (1992) Characterization and identification of Lactobacillus pentosus and Lactobacillus plantarum strains from fermented foods in Thailand. J Gen Appl Microbiol 38:121–134. https://doi.org/10.2323/jgam.38.121

    Article  CAS  Google Scholar 

  14. Leroy F, De Vuyst L (2004) Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Technol 15(2):67–78. https://doi.org/10.1016/j.tifs.2003.09.004

    Article  CAS  Google Scholar 

  15. Moon SH, Kim CR, Chang HC (2018) Heterofermentative lactic acid bacteria as a starter culture to control kimchi fermentation. LWT-Food Sci Technol 88:181–188. https://doi.org/10.1016/jlwt.2017.10.009

    Article  CAS  Google Scholar 

  16. Saelim K, Jampaphaeng K, Maneerat S (2017) Functional properties of Lactobacillus plantarum S0/7 isolated fermented stinky bean (Sa Taw Dong) and its use as a starter culture. J Funct Foods 38:370–377. https://doi.org/10.1016/j.jff.2017.09.035

    Article  CAS  Google Scholar 

  17. Vera-Pingitore E, Jimenez ME, Dallagnol A et al (2016) Screening and characterization of potential probiotic and starter bacteria for plant fermentations. LWT—Food Sci Technol 71:288–294. https://doi.org/10.1016/jlwt.2016.03.046

    Article  CAS  Google Scholar 

  18. Jin J, Kim SY, Jin Q, Eom HJ, Han NS (2008) Diversity analysis of lactic acid bacteria in Takju Korean rice wine. J Microbiol Biotechnol 18(10):1678–1682

    CAS  PubMed  Google Scholar 

  19. Luang-In V, Deeseenthum S (2016) Exopolysaccharide-producing isolates from Thai milk kefir and their antioxidant activities. LWT—Food Sci Technol 73:592–601. https://doi.org/10.1016/j.lwt.2016.06.068

    Article  CAS  Google Scholar 

  20. Mahasneh AM, Hamdan S, Mahasneh SA (2015) Probiotic properties of Lactobacillus species isolated from local traditional fermented products. Jordan J Biol Sci 8:81–87

    Article  CAS  Google Scholar 

  21. Pieniz S, Andreazza R, Anghinoni T, Camargo F, Brandelli A (2014) Probiotic potential, antimicrobial and antioxidant activities of Enterococcus durans strain LAB18s. Food Control 37:251–256. https://doi.org/10.1016/jfoodcont.2013.09.055

    Article  CAS  Google Scholar 

  22. Cebeci A, Gürakan C (2003) Properties of potential probiotic Lactobacillus plantarum strains. Food Microbiol 20:511–518. https://doi.org/10.1016/50740-0020(02)00174-0

    Article  Google Scholar 

  23. Charteris WP, Kelly PM, Morelli L, Collins JK (1998) Antibiotic susceptibility of potentially probiotic Lactobacillus species. J Food Prot 61(12):1636–1643. https://doi.org/10.4315/0362-028X-61.12.1636

    Article  CAS  PubMed  Google Scholar 

  24. Luang-In V, Saengha W, Karirat T, Deeseenthum S, Buranrat B, Nudmamud-Thanoi S et al (2021) Probiotic attributes, GABA-producing capacity and cytotoxic effects of microbes isolated from thai fermented foods. Int J Agric Biol 25(2):409–419. https://doi.org/10.17957/IJAB/15.1682

    Article  CAS  Google Scholar 

  25. Carasi P, Jacquot C, Romanin DE, Elie AM, De Antoni GL, de UrdaciSerradell MCMA (2014) Safety and potential beneficial properties of Enterococcus strains isolated from kefir. Int Dairy J 39:193–200. https://doi.org/10.1016/j.dairyj.2014.06.009

    Article  CAS  Google Scholar 

  26. Ji Y, Kim H, Park H et al (2013) Functionality and safety of lactic bacterial strains from Korean kimchi. Food Control 31:467–473. https://doi.org/10.1016/j.foodcont.2012.10.034

    Article  CAS  Google Scholar 

  27. Valeriano VD, Parungao-Balolong MM, Kang DK (2014) In vitro evaluation of the mucin-adhesion ability and probiotic potential of Lactobacillus mucosae LM 1. J Appl Microbiol 117:485–497. https://doi.org/10.1111/jam.12539

    Article  CAS  PubMed  Google Scholar 

  28. Tamang JP, Watanabe K, Holzapfel WH (2016) Diversity of microorganisms in global fermented foods and beverages. Front Microbiol. https://doi.org/10.3389/fmicb.2016.00377

    Article  PubMed  PubMed Central  Google Scholar 

  29. Argyri AA, Zoumpopoulou G, Karatzas KAG, Tsakalidou E, Nychas GJE, Panagou EZ, Tassou CC (2013) Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiol 33:282–291. https://doi.org/10.1016/j.fm2012.10.005

    Article  CAS  PubMed  Google Scholar 

  30. Ryu EH, Chang HC (2013) In vitro study of potentially probiotic lactic acid bacteria strains isolated from kimchi. Ann Microbiol 63:1387–1395

    Article  CAS  Google Scholar 

  31. Tamang JP, Tamang B, Schillinger U, Guigas C, Holzapfel WH (2009) Functional properties of lactic acid bacteria isolated from ethnic fermented vegetables of the Himalayas. Int J Food Microbiol 135:28–33. https://doi.org/10.1016/j.ijfoodmicro.2009.07.016

    Article  CAS  PubMed  Google Scholar 

  32. Yu HS, Jang HJ, Lee NK, Paik HD (2019) Evaluation of the probiotic characteristics and prophylactic potential of Weissella cibaria strains isolated from kimchi. LWT—Food Sci Technol 112:108229. https://doi.org/10.1016/j.lwt.2019.05.127

    Article  CAS  Google Scholar 

  33. Pennacchia C, Ercolini D, Blaiotta G, Pepe O, Mauriello G, Villani F (2004) Selection of Lactobacillus strains from fermented sausages for their potential use as probiotics. Meat Sci 67:309–317. https://doi.org/10.1016/jmeatsci.2003.11.003

    Article  CAS  PubMed  Google Scholar 

  34. Ramos CL, Thorsen L, Schwan RF, Jespersen L (2013) Strain-specific probiotics properties of Lactobacillus fermentum, Lactobacillus plantarum and Lactobacillus brevis isolates from Brazilian food products. Food Microbiol 36:22–29. https://doi.org/10.1016/jfm.2013.03.010

    Article  CAS  PubMed  Google Scholar 

  35. Yuksekdag ZN, Aslim B (2010) Assessment of potential probiotic-and starter properties of Pediococcus spp. isolated from Turkish-type fermented sausages (sucuk). J Microbiol Biotechnol 20:161–168. https://doi.org/10.4014/jmb.0904.04019

    Article  PubMed  Google Scholar 

  36. Choi EA, Chang HC (2015) Cholesterol-lowering effects of a putative probiotic strain Lactobacillus plantarum EM isolated from kimchi. LWT—Food Sci Technol 62:210–217. https://doi.org/10.1016/j.lwt.2015.01.019

    Article  CAS  Google Scholar 

  37. Lee YK, Salminen S (1995) The coming of age of probiotics. Trends Food Sci Technol 6:241–245. https://doi.org/10.1016/S0924-2244(00)89085-8

    Article  Google Scholar 

  38. Dunne C, Murphy L, Flynn S, O’Mahony L, O’Halloran S, Feeney M et al (1999) Probiotics: from myth to reality. Demonstration of functionality in animal models of disease and in human clinical trials. Anton Leeuwenhoek Int J G 76:279–292

    Article  CAS  Google Scholar 

  39. Morelli L (2000) In vitro selection of probiotic lactobacilli: a critical appraisal. Curr Issues Intestinal Microbiol 1:59–67

    CAS  Google Scholar 

  40. Taranto MP, Perez-Martinez G, de Valdez GF (2006) Effect of bile acid on the cell membrane functionality of lactic acid bacteria for oral administration. Res Microbiol 157:720–725. https://doi.org/10.1016/j.resmic.2006.04.002

    Article  CAS  PubMed  Google Scholar 

  41. Noriega L, Gueimonde M, Sánchez B, de MargollesReyes-Gavilán ACG (2004) Effect of the adaptation to high bile salts concentrations on glycosidic activity, survival at low pH and cross-resistance to bile salts in Bifidobacterium. Int J Food Microbiol 94:79–86. https://doi.org/10.1016/j.iifoodmicro.2004.01.003

    Article  CAS  PubMed  Google Scholar 

  42. Henriksson A, Khaled AKD, Conway PL (1999) Lactobacillus colonization of the gastrointestinal tract of mice after removal of the non-secreting stomach region. Microb Ecol Health Dis 11:96–99. https://doi.org/10.1080/089106099435835

    Article  Google Scholar 

  43. Lourens-Hattingh A, Viljoen BC (2001) Yogurt as probiotic carrier food. Int Dairy J 11:1–17. https://doi.org/10.1016/S0958-6946(01)0036-X

    Article  Google Scholar 

  44. Zhang B, Wang Y, Tan Z, Li Z, Jiao Z, Huang Q (2016) Screening of probiotic activities of lactobacilli strains isolated from traditional Tibetan Qula, a raw yak milk cheese. Asian-Australas J Anim Sci 29:1490–1499. https://doi.org/10.5713/ajas.15.0849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hummel AS, Hertel C, Holzapfel WH, Franz CM (2007) Antibiotic resistances of starter and probiotic strains of lactic acid bacteria. Appl Environ Microbiol 73:730–739. https://doi.org/10.1128/AEM.02105-06

    Article  CAS  PubMed  Google Scholar 

  46. Lokesh D, Parkesh R, Kammara R (2018) Bifidobacterium adolescentis is intrinsically resistant to antitubercular drugs. Sci Rep 8(1):11897. https://doi.org/10.1038/s41598-018-30429-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lokesh D, Rajagopal K, Shin JH (2019) Multidrug resistant probiotics as an alternative to antibiotic probiotic therapy. J Infectiol 2(4):46–49

    Article  Google Scholar 

  48. Pan L, Hu X, Wang X (2011) Assessment of antibiotic resistance of lactic acid bacteria in Chinese fermented foods. Food Control 22(8):1316–1321. https://doi.org/10.1016/j.foodcont.2011.02.006

    Article  CAS  Google Scholar 

  49. Begley M, Hill C, Gahan CG (2006) Bile salt hydrolase activity in probiotics. Appl Environ Microbiol 72:1729–1738. https://doi.org/10.1128/aem.72.3.1729-1738.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. FAO, WHO, (2002) Guidelines for the evaluation of probiotics in food, report of a joint FAO/WHO working group on drafting guideline for the evaluation of probiotic in food. World Health Organization, Geneva

    Google Scholar 

  51. Buckenhüskes HJ (1993) Selection criteria for lactic acid bacteria to be used as starter cultures for various food commodities. FEMS Microbiol Rev 12:253–271. https://doi.org/10.1111/j.1574-6976.1993.tb0022.x

    Article  Google Scholar 

  52. Saarela M, Mogensen G, Fondén R, Mättö J, Mattila-Sandholm T (2000) Probiotic bacteria: safety, functional and technological properties. J Biotechnol 84(3):197–215. https://doi.org/10.1016/S0168-1656(00)00375-8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Department of Food Technology and Nutrition, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai District, Maha Sarakham 44150 Thailand and the Department of Food Technology, Faculty of Agricultural Technology, Kalasin University, Kalasin District, Kalasin 4600 Thailand. This manuscript has been proofread by Mr. Peter Humphrey Charge at Proofread4Thais Professional English Editing service.

Funding

This research was financially supported by the Department of Food Technology and Nutrition, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai District, Maha Sarakham 44150 Thailand and the Department of Food Technology, Faculty of Agricultural Technology, Kalasin University, Kalasin District, Kalasin 4600 Thailand.

Author information

Authors and Affiliations

Authors

Contributions

PS and SW contributed to conceptualization.PS and SW conceived material preparation, data collection, and analysis. SW and LV conceived investigation. PS writing—original draft. PS, SW, and LV were involved in writing—draft editing.

Corresponding author

Correspondence to Wannee Samappito.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 144 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pumriw, S., Luang-In, V. & Samappito, W. Screening of Probiotic Lactic Acid Bacteria Isolated from Fermented Pak-Sian for Use as a Starter Culture. Curr Microbiol 78, 2695–2707 (2021). https://doi.org/10.1007/s00284-021-02521-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02521-w

Navigation