Skip to main content
Log in

Comparison of Class 2 Integron Integrase Activities

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Integrons play important roles in the dissemination of antimicrobial resistant genes among bacteria. Class 2 integrons usually has an internal stop codon, TAA, in integrase genes (intI2), leading to a truncated integrase, IntI2*. However, a few class 2 integrons with a natural full-length integrase have been reported. In this study, the sequences of natural full-length intI2 were extracted from INTEGRALL database and analyzed. A total of 236 sequences of intI2 were retrieved from INTEGRALL database, only seven of which were natural full-length intI2 genes and could be divided into five types according to their coding amino acid sequence. Quantitative real-time PCR was used to detect gene cassette sat2 integration and excision efficiency catalyzed by different natural full-length IntI2s. The results showed that all five IntI2s could catalyze attI2 × attCsat2 integration and attCdfrA1/sat2 × attCsat2/aadA1 excision in Escherichia coli. Integration and excision frequency catalyzed by IntI2A176 was highest and was about twofold as high as those catalyzed by IntI2S175_A176. The secondary structure of the IntI2 was predicted by online software. Polymorphisms of these five IntI2s were limited within residues 172, 174, 175, 176 and 256, and these residues were all far away from the predicted DNA binding regions or catalyzed sites. Influence of amino acid sequence polymorphisms of these natural full-length IntI2s on their catalyzed activities is limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from ref. [19] with permission from Blackwell Publishing Ltd)

Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Laxminarayan R, Chaudhury RR (2016) Antibiotic resistance in India: drivers and opportunities for action. PLoS Med 13:e1001974. https://doi.org/10.1371/journal.pmed.1001974

    Article  PubMed  PubMed Central  Google Scholar 

  2. Van Boeckel TP, Gandra S, Ashok A, Caudron Q, Grenfell BT, Levin SA, Laxminarayan R (2014) Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. Lancet Infect Dis 14:742–750. https://doi.org/10.1016/S1473-3099(14)70780-7

    Article  PubMed  Google Scholar 

  3. Laxminarayan R, Duse A, Wattal C, Zaidi AK, Wertheim HF, Sumpradit N, Vlieghe E, Hara GL, Gould IM, Goossens H, Greko C, So AD, Bigdeli M, Tomson G, Woodhouse W, Ombaka E, Peralta AQ, Qamar FN, Mir F, Kariuki S, Bhutta ZA, Coates A, Bergstrom R, Wright GD, Brown ED, Cars O (2013) Antibiotic resistance-the need for global solutions. Lancet Infect Dis 13:1057–1098. https://doi.org/10.1016/S1473-3099(13)70318-9

    Article  PubMed  Google Scholar 

  4. Harbottle H, Thakur S, Zhao S, White DG (2006) Genetics of antimicrobial resistance. Anim Biotechnol 17:111–124. https://doi.org/10.1080/10495390600957092

    Article  CAS  PubMed  Google Scholar 

  5. Smith Moland E, Hanson ND, Herrera VL, Black JA, Lockhart JT, Hossain A, Johnson JA, Goering RV, Thomson KS (2003) Plasmid mediated, carbapenem-hydrolysing β-lactamase, KPC-2, in Klebsiella pneumonia isolates. J Antimicrob Chemother 51:711–714

    Article  CAS  Google Scholar 

  6. Gay K, Robicsek A, Strahilevitz J, Park CH, Jacoby G, Barrett TJ, Medalla F, Chiller TM, Hooper DC (2006) Plasmid-mediated quinolone resistance in non-Typhi serotypes of Salmonella enterica. Clin Infect Dis 43:297–304. https://doi.org/10.1086/505397

    Article  CAS  PubMed  Google Scholar 

  7. Stokes HW, Hall RM (1989) A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons. Mol Microbiol 3:1669–1683. https://doi.org/10.1111/j.1365-2958.1989.tb00153.x

    Article  CAS  PubMed  Google Scholar 

  8. Mazel D (2006) Integrons: agents of bacterial evolution. Nat Rev Microbiol 4:608–620. https://doi.org/10.1038/nrmicro1462

    Article  CAS  PubMed  Google Scholar 

  9. Escudero JA, Loot C, Nivina A, Mazel D (2015) The integron: adaptation on demand. Microbiol Spectr 3:MDNA3-0019–2014. https://doi.org/10.1128/microbiolspec.MDNA3-0019-2014

    Article  CAS  PubMed  Google Scholar 

  10. Gillings MR (2014) Integrons: past, present, and future. Microbiol Mol Biol Rev 78:257–277. https://doi.org/10.1128/MMBR.00056-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fluit AC, Schmitz FJ (1999) Class 1 integrons, gene cassettes, mobility, and epidemiology. Eur J Clin Microbiol Infect Dis 18:761–770. https://doi.org/10.1007/s100960050398

    Article  CAS  PubMed  Google Scholar 

  12. Collis CM, Grammaticopoulos G, Briton J, Stokes HW, Hall RM (1993) Site-specific insertion of gene cassettes into integrons. Mol Microbiol 9:41–52. https://doi.org/10.1111/j.1365-2958.1993.tb01667.x

    Article  CAS  PubMed  Google Scholar 

  13. Collis CM, Hall RM (1992) Site-specific deletion and rearrangement of integron insert genes catalyzed by the integron DNA integrase. J Bacteriol 174:1574–1585. https://doi.org/10.1128/jb.174.5.1574-1585.1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gravel A, Fournier B, Roy PH (1998) DNA complexes obtained with the integron integrase IntI1 at the attI1 site. Nucleic Acids Res 26:4347–4355. https://doi.org/10.1093/nar/26.19.4347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Recchia GD, Stokes HW, Hall RM (1994) Characterisation of specific and secondary recombination sites recognised by the integron DNA integrase. Nucleic Acids Res 22:2071–2078. https://doi.org/10.1093/nar/22.11.2071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Collis CM, Hall RM (1995) Expression of antibiotic resistance genes in the integrated cassettes of integrons. Antimicrob Agents Chemother 39:155–162. https://doi.org/10.1128/aac.39.1.155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jove T, Da RS, Denis F, Mazel D, Ploy MC (2010) Inverse correlation between promoter strength and excision activity in class 1 integrons. PLoS Genet 6:e1000793. https://doi.org/10.1371/journal.pgen.1000793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Papagiannitsis CC, Tzouvelekis LS, Miriagou V (2009) Relative strength of the class 1 integron promoter hybrid 2 and the combinations of strong and hybrid 1 with an active P2 promoter. Antimicrob Agents Chemother 53:277–280

    Article  CAS  Google Scholar 

  19. Wei Q, Jiang X, Li M, Chen X, Li G, Li R, Lu Y (2011) Transcription of integron-harboured gene cassette impacts integration efficiency in class 1 integron. Mol Microbiol 80:1326–1336. https://doi.org/10.1111/j.1365-2958.2011.07648.x

    Article  CAS  PubMed  Google Scholar 

  20. Hansson K, Sundstrom L, Pelletier A, Roy PH (2002) IntI2 integron integrase in Tn7. J Bacteriol 184:1712–1721. https://doi.org/10.1128/jb.184.6.1712-1721.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ramirez MS, Quiroga C, Centron D (2005) Novel rearrangement of a class 2 integron in two non-epidemiologically related isolates of Acinetobacter baumannii. Antimicrob Agents Chemother 49:5179–5181. https://doi.org/10.1128/AAC.49.12.5179-5181.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Marquez C, Labbate M, Ingold AJ, Roy CP, Ramirez MS, Centron D, Borthagaray G, Stokes HW (2008) Recovery of a functional class 2 integron from an Escherichia coli strain mediating a urinary tract infection. Antimicrob Agents Chemother 52:4153–4154. https://doi.org/10.1128/AAC.00710-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wei Q, Hu Q, Li S, Lu H, Chen G, Shen B, Zhang P, Zhou Y (2014) A novel functional class 2 integron in clinical Proteus mirabilis isolates. J Antimicrob Chemother 69:973–976. https://doi.org/10.1093/jac/dkt456

    Article  CAS  PubMed  Google Scholar 

  24. Barlow RS, Gobius KS (2006) Diverse class 2 integrons in bacteria from beef cattle sources. J Antimicrob Chemother 58:1133–1138. https://doi.org/10.1093/jac/dkl423

    Article  CAS  PubMed  Google Scholar 

  25. Rodriguez-Minguela CM, Apajalahti JH, Chai B, Cole JR, Tiedje JM (2009) Worldwide prevalence of class 2 integrases outside the clinical setting is associated with human impact. Appl Environ Microbiol 75:5100–5110. https://doi.org/10.1128/AEM.00133-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jove T, Da RS, Tabesse A, Gassama-Sow A, Ploy MC (2017) Gene expression in class 2 integrons is SOS-independent and involves two Pc promoters. Front Microbiol 8:1499. https://doi.org/10.3389/fmicb.2017.01499

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mendes MA, Couve-Deacon E, Bousquet P, Chainier D, Jove T, Ploy MC, Barraud O (2019) Proteae: a reservoir of class 2 integrons? J Antimicrob Chemother 74:1560–1562. https://doi.org/10.1093/jac/dkz079

    Article  CAS  Google Scholar 

  28. Moura A, Soares M, Pereira C, Leitao N, Henriques I, Correia A (2009) INTEGRALL: a database and search engine for integrons, integrases and gene cassettes. Bioinformatics 25:1096–1098. https://doi.org/10.1093/bioinformatics/btp105

    Article  CAS  PubMed  Google Scholar 

  29. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  30. Yang Z, Jiang X, Wei Q, Chen N, Lu Y (2009) A novel and rapid method for determining integration frequency catalyzed by integron integrase intI1. J Microbiol Methods 76:97–100. https://doi.org/10.1016/j.mimet.2008.09.002

    Article  CAS  PubMed  Google Scholar 

  31. MacDonald D, Demarre G, Bouvier M, Mazel D, Gopaul DN (2006) Structural basis for broad DNA-specificity in integron recombination. Nature 440:1157–1162. https://doi.org/10.1038/nature04643

    Article  CAS  PubMed  Google Scholar 

  32. Lin-Chao S, Chen WT, Wong TT (1992) High copy number of the pUC plasmid results from a Rom/Rop-suppressible point mutation in RNA II. Mol Microbiol 6:3385–3393. https://doi.org/10.1111/j.1365-2958.1992.tb02206.x

    Article  CAS  PubMed  Google Scholar 

  33. Chang AC, Cohen SN (1978) Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol 134:1141–1156

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 81572034, the Development Fund for Shanghai Talents under Grant No. 2018098, Fengxian District (Society) Science and Technology Development Fund Project under Grant No. 20151001.

Author information

Authors and Affiliations

Authors

Contributions

QW and XW conceived the study. GL coordinated the study. XW, NK, MC, LZ and MS performed the experiments. XW and QW analyzed the data and wrote the manuscript. QW and GL revised the manuscript.

Corresponding authors

Correspondence to Gang Li or Quhao Wei.

Ethics declarations

Conflict of interest

Neither author has any conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Kong, N., Cao, M. et al. Comparison of Class 2 Integron Integrase Activities. Curr Microbiol 78, 967–978 (2021). https://doi.org/10.1007/s00284-021-02352-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02352-9

Navigation