Skip to main content
Log in

Lipid and Metabolite Profiling of Serpula lacrymans Under Freezing Stress

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Basidiomycete fungus Serpula lacrymans is one of the most dangerous indoor fungus causing dry rot of timber. The physiology of this fungus deserves more attention as a basis for development of methods of dry rot treatment. We observed an increase in the freezing resistance of S. lacrymans after pre-cultivation of mycelia at elevated temperatures. To examine the biochemical mechanisms underlying this phenomenon the lipid composition and metabolite profiling of mycelia subjected to freezing and thawing were investigated. An analysis is made of the growth rate and metabolism of “daughter” cultures derived from a frozen mycelia. According to the results, sphingolipids and water-soluble metabolites such as mannitol, glycerol, sugar alcohols, some amino- and organic acids are able to function as protective compounds providing a cross-resistance between heat shock and freeze–thaw stress in S. lacrymans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gabriel J, Svec K (2017) Occurrence of indoor wood decay basidiomycetes in Europe. Fungal Biol Rev 3:212–217

    Article  Google Scholar 

  2. Schmidt O (2007) Indoor wood-decay basidiomycetes: damage, causal fungi, physiology, identification and characterization, prevention and control. Mycol Prog 6:261–279

    Article  Google Scholar 

  3. Watkinson SC, Eastwood DC (2012) Serpula lacrymans, wood and buildings. Adv Appl Microbiol 78:121–149

    Article  CAS  Google Scholar 

  4. Linde GA, Luciani A, Lopes AD, do Valle JS, Colauto NB (2018) Long-term cryopreservation of basidiomycetes. Braz J Microbiol 49:220–231

    Article  CAS  Google Scholar 

  5. Panoff JM, Thammavongs B, Laplace JM, Hartke A, Boutibonnes P, Auffray Y (1995) Cryotolerance and cold adaptation in Lactococcus lactis subsp. lactis IL1403. Cryobiology 32:516–520

    Article  Google Scholar 

  6. Thammavongs B, Panoff J-M, Gueguen M (2000) Phenotypic adaptation to freeze–thaw stress of the yeast-like fungus Geotrichum candidum. Int J Food Microbiol 60:99–105

    Article  CAS  Google Scholar 

  7. Smith D (1982) Liquid nitrogen storage of fungi. Trans Br Mycol Soc 79:415–421

    Article  CAS  Google Scholar 

  8. Park J-I, Grant CM, Attfield PV, Dawes IW (1997) The freeze-thaw stress response of the yeast Saccharomyces cerevisiae is growth phase specific and is controlled by nutritional state via the RAS-cyclic amp signal transduction pathway. Appl Environ Microbiol 63:3818–3824

    Article  CAS  Google Scholar 

  9. Dubernet S, Panoff J-M, Thammavongs B, Gueguen M (2002) Nystatin and osmotica as chemical enhancers of the phenotypic adaptation to freeze–thaw stress in Geotrichum candidum ATCC 204307. Int J Food Microbiol 76:215–221

    Article  CAS  Google Scholar 

  10. Lewis JG, Learmonth RP, Watson K (1995) Induction of heat, freezing and salt tolerance by heat and salt shock in Saccharomyces cerevisiae. Microbiology 141:687–694

    Article  CAS  Google Scholar 

  11. Kowalsky LRZ, Kondo K, Inouye M (1995) Cold-shock induction of a family of TIP1-related proteins associated with the membrane in Saccharomyces cerevisiae. Mol Microbiol 15:341–353

    Article  Google Scholar 

  12. Kotlova ER, Senik SV, Kücher T, Shavarda AL, Kiyashko AA, Psurtseva NV, Sinyutina NF, Zubarev RA (2009) Alterations in the composition of membrane glycero- and sphingolipids in the course of Flammulina velutipes surface culture development. Microbiology 78(2):193–201

    Article  CAS  Google Scholar 

  13. Nichols BW (1963) Separation of the lipids of photosynthetic tissues: improvements in analysis by thin-layer chromatography. Biochim Biophys Acta 70:417–425

    Article  CAS  Google Scholar 

  14. Benning C, Huang ZH, Gage DA (1995) Accumulation of a novel glycolipid and a betaine lipid in cell of Rhodobacter sphaeroides grown under phosphate limitation. Arch Biochem Biophys 317:103–111

    Article  CAS  Google Scholar 

  15. R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  16. Stacklies W, Redestig H, Scholz M, Walther D, Selbig J (2007) pcaMethods-a bioconductor package providing PCA methods for incomplete data. Bioinformatics 23:1164–1167

    Article  CAS  Google Scholar 

  17. Gu Z, Eils R, Schlesner M (2016) Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32:2847–2849

    Article  CAS  Google Scholar 

  18. Lu J, Xu Y, Wang J, Singer SD, Chen G (2020) The role of triacylglycerol in plant stress response. Plants 9:472

    Article  CAS  Google Scholar 

  19. Tereshina VM, Memorskaya AS, Kotlova ER (2013) Lipid metabolism in Aspergillus niger under conditions of heat shock. Microbiology 82(5):542–546

    Article  CAS  Google Scholar 

  20. Yanutsevich EA, Memorskaya AS, Groza NV, Kochkina GA, Tereshina VM (2014) Heat shock response in the thermophilic fungus Rhizomucor miehei. Microbiology 83(5):498–504

    Article  CAS  Google Scholar 

  21. Tereshina VM, Memorskaya AS (2005) Adaptation of Flammulina velutipes to hypothermia in natural environments: the role of lipids and carbohydrates. Microbiology 74(3):279–283

    Article  CAS  Google Scholar 

  22. Hazel JR (1995) Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Annu Rev Physiol 57:19–42

    Article  CAS  Google Scholar 

  23. McElhaney RN (1984) The Relationship between membrane lipid fluidity and phase state and the ability of bacteria and mycoplasmas to grow and survive at various temperatures. In: Kates M, Manson LA (eds) Biomembranes. Plenum Press, New York, pp 249–276

    Google Scholar 

  24. Lehnen M, Ebert BE, Blank LM (2019) Elevated temperatures do not trigger a conserved metabolic network response among thermotolerant yeasts. BMC Microbiol 19(1):100

    Article  Google Scholar 

  25. Ruijter GJG, Bax M, Patel H, Flitter SJ, van de Vondervoort PJI, de Vries RP et al (2003) Mannitol is required for stress tolerance in Aspergillus niger conidiospores. Eukaryot Cell 2:690–698

    Article  CAS  Google Scholar 

  26. Nissim I, Hardy M, Pleasure J, Nissim I, States B (1992) A mechanism of glycine and alanine cytoprotective action: stimulation of stress-induced HSP70 mRNA. Kidney Int 42(3):775–782

    Article  CAS  Google Scholar 

  27. Nissim I, States B, Hardy M, Pleasure J, Nissim I (1993) Effect of glutamine on heat-shock-induced mRNA and stress proteins. J Cell Physiol 157(2):313–318

    Article  CAS  Google Scholar 

  28. Pérez-Torres I, Zuniga-Munoz AM, Guarner-Lans V (2017) Beneficial effects of the amino acid glycine. Mini Rev Med Chem 17(1):15–32

    Article  Google Scholar 

  29. Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13:17R-27R

    Article  CAS  Google Scholar 

  30. Singer MA, Lindquist S (1998) Thermotolerance in Saccharomyces cerevesiae: the yin and yang of trehalose. TIB Tech 16:460–468

    CAS  Google Scholar 

  31. Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  CAS  Google Scholar 

  32. Kaul SC, Obuchi K, Iwahashi H, Komatsu Y (1992) Cryoprotection provided by heat shock treatment in Saccharomyces cerevisiae. Cell Mol Biol 38:135–143

    CAS  PubMed  Google Scholar 

Download references

Funding

Funding was provided by Institutional research project “Biodiversity, ecology, structural and functional features of fungi and fungus-like protists” АААА-А19-119020890079-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Viktorovna Senik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senik, S.V., Kolker, T.L., Kotlova, E.R. et al. Lipid and Metabolite Profiling of Serpula lacrymans Under Freezing Stress. Curr Microbiol 78, 961–966 (2021). https://doi.org/10.1007/s00284-021-02349-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02349-4

Navigation