Skip to main content
Log in

Pathogenicity and Lipid Composition of Mycelium of the Fungus Stagonospora cirsii VIZR 1.41 Produced on Liquid Media with Different Nitrogen Sources

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The effect of the nitrogen source (sodium nitrate and soybean meal) on the growth, pathogenicity, and lipid composition of mycelium of Stagonospora cirsii Davis VIZR 1.41, a potential mycoherbicide against Canada thistle (Cirsium arvens (L.) Scop.), was studied. The fungus grew significantly (two times) faster on sucrose-soybean meal medium (SSM) than on modified Czapek medium (CM). The fungal mycelium during the exponential growth phase demonstrated the maximal pathogenicity level on the third day on SSM and on the sixth day on CM. Canada thistle leaf tissues were more susceptible (25% higher development of necrotic lesion) to mycelium obtained on SSM than to mycelium obtained on CM. The nitrogen source strongly affected the lipid composition of S. cirsii mycelium. In S. cirsii mycelium obtained on SSM, the total lipid content was 1.7 times lower; the ratio of nonpolar lipids to polar lipids was three times lower than that for fungal mycelium grown on CM. Considerable differences were found in the composition of nonpolar (sterols and fatty acid) and polar (sphingolipids) lipids with respect to the nitrogen source in the culture medium. The higher contents of sterols, free fatty acids, and some glycoceramides in the mycelium of S. cirsii obtained on SSM may be related to its higher pathogenicity level and can serve as a marker of mycoherbicide quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. RF Patent no. 2515899, 2014.

  2. RF Patent no. 2543665, 2015.

  3. Ravensberg, W.J., A Roadmap to the Successful Development and Commercialization of Microbial Pest Control Products for Control of Anthropods, Dordrecht: Springer Science+Business Media, 2011.

  4. Berestetskii, A.O. and Sokornova, S.V., Mikol. Fitopatol., 2009, vol. 43, no. 6, pp. 473–489.

    Google Scholar 

  5. Magan, N., in The Mycota IV. Environmental and Microbial Relationships. Fungi in Extreme Environments, Kubicek, C.P. and Druzhinina, I.S., Eds., Berlin: Springer-Verlag, 2007, vol. 4, pp. 85–103.

    Google Scholar 

  6. Tormo, J.R., Asensio, F.J., and Bills, G.F., Methods Mol. Biol., 2012, vol. 944, pp. 59–78.

    CAS  PubMed  Google Scholar 

  7. Siebers, M., Brands, M., Wewer, V., Duan, Y., Hölzl, G., and Dormann, P., Biochem. Biophys. Acta, 2016, vol. 1861, pp. 1379–1395.

    CAS  PubMed  Google Scholar 

  8. Wise, C., Falardeau, J., Hagberg, I., and Avis, T.J., Phytopathology, 2014, vol. 104, pp. 1036–1041.

    Article  CAS  Google Scholar 

  9. Morrissey, J.P. and Osbourn, A.E., Microbiol. Mol. Biol. Rev., 1999, vol. 63, pp. 708–724.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Gessler, N.N., Filippovich, S.Yu., Bachurina, G.P., Kharchenko, E.A., Groza, N.V., and Belozerskaya, T.A., Appl. Biochem. Microbiol., 2017, vol. 53, no. 6, pp. 628–639.

    Article  CAS  Google Scholar 

  11. Pert, S.Dzh., Osnovy kul’tivirovaniya mikroorganizmov i kletok (Principles of Cultivation of Microorganisms and Cells), Moscow: Mir, 1978.

  12. Sokornova, S.V. and Berestetskii, A.O., S.-Kh. Biol., 2018, vol. 53, no. 5, pp. 1054–1061.

    Google Scholar 

  13. Folch, G., Lees, M., and Sloane, StanleyG.H., J. Biol. Chem., 1957, vol. 226, pp. 497–509.

    CAS  PubMed  Google Scholar 

  14. Berestetskii, A.O., Yuzikhin, O.S., Katkova, A.S., Dobrodumov, A.V., Sivogrivov, D.E., and Kolombet, L.V., Appl. Biochem. Microbiol., 2010, vol. 46, no. 1, pp. 75–79.

    Article  CAS  Google Scholar 

  15. William, H.F., Biochem. Mol. Biol., 2005, vol. 33, pp. 357–360.

    Google Scholar 

  16. Fuchs, B., Rosmarie Suß., Teuber, K., Eibisch, M., and Schiller, J., J. Chromatogr. A, 2011, vol. 1218, pp. 2754–2774.

    Article  CAS  Google Scholar 

  17. Berestetskii, A.O., Vestn. Zashch. Rast., 2017, vol. 91, pp. 5–12.

    Google Scholar 

  18. Sokornova, S.V., Khyutti, A.V., and Berestetskii, A.O., Vestn. Zashch. Rast., 2011, no. 3, pp. 54–56.

  19. EU Patent no. 1401284 B1, 2010.

  20. US Patent no. 8557735 B2, 2013.

  21. Carling, D.E. and Uiner, R.H., Plant Dis., 1990, vol. 74, pp. 901–903.

    Article  Google Scholar 

  22. Berestetski, A., Ehrig, T., and Kastirr, U., Plant Breed., 2002, vol. 121, pp. 493–500.

    Article  Google Scholar 

  23. Donzelli, B.G.G. and Churchill, A.C.L., Phytopathology, 2007, vol. 97, pp. 916–929.

    Article  Google Scholar 

  24. US Patent no. 20130287829 A1, 2013.

  25. Paisley, D., Robson, G.D., and Denning, D.W., Med. Mycol., 2005, vol. 43, pp. 397–401.

    Article  Google Scholar 

  26. Zhou, T. and Boland, G.J., Can. J. Plant Pathol., 1999, vol. 21, pp. 93–99.

    Article  CAS  Google Scholar 

  27. Romón, P., Hatting, H., Goldarazena, A., and Iturrondobeitia, J.C., Fungal Biol., 2017, vol. 121, pp. 189–197.

    Article  Google Scholar 

  28. Jackson, M.A. and Schisler, D.A., Appl. Environ. Microbiol., 1992, vol. 58, pp. 2260–2265.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Cliquet, S. and Jackson, M.A., J. Ind. Microbiol. Biotechnol., 2005, vol. 32, pp. 204–210.

    Article  CAS  Google Scholar 

  30. Meeuwse, P., Sanders, J.P.M., Tramper, J., and Rinzema, A., Biofuels Bioprod. Bioref., 2013, vol. 7, pp. 512–524.

    Article  CAS  Google Scholar 

  31. Suzuki, O., Yokochi, T., and Nakasato, S., JAOC, 1984, vol. 61, pp. 1856–1861.

    Article  CAS  Google Scholar 

  32. Bossche, H.V., in Biochemistry of Cell Walls and Membranes in Fungi, Kuhii, P.J., , Eds., Berlin: Springer-Verlag, 1990, p. 327.

    Google Scholar 

  33. Ten, L.N., Tyshchenko, A.A., Gusakova, S.D., Mukhamedzhanov, S.Z., Otroshchenko, O.S., and Kasyanenko, A.G., Chem. Nat. Comp., 1977, vol. 13, pp. 524–527.

    Article  Google Scholar 

  34. Rittenour, W.R., Chen, M., Cahoon, E.B., and Harris, S.D., PLoS One, 2011, vol. 6, no. 4. e19385.

    Article  CAS  Google Scholar 

  35. Umemura, K., Ogawa, N., Yamauchi, T., Iwata, M., Shimura, M., and Koga, J., Plant Cell Physiol., 2000, vol. 41, pp. 676–683.

    Article  CAS  Google Scholar 

  36. Rhome, R. and Del Poeta, M., Annu. Rev. Microbiol., 2009, vol. 63, pp. 119–131.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (project no. 16-16-00085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Berestetskiy.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by V. Mittova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frolova, G.M., Sokornova, S.V. & Berestetskiy, A.O. Pathogenicity and Lipid Composition of Mycelium of the Fungus Stagonospora cirsii VIZR 1.41 Produced on Liquid Media with Different Nitrogen Sources. Appl Biochem Microbiol 55, 556–562 (2019). https://doi.org/10.1134/S0003683819050041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683819050041

Keywords:

Navigation