Skip to main content
Log in

Membrane Depolarization Sensitizes Pseudomonas aeruginosa Against Tannic Acid

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The use of dietary polyphenols as antimicrobial agents has gained immense popularity in recent years, although few of them—like tannic acid has limited use in this field of research; one of the main reasons is its restricted access through the bacterial membrane. Dissipating the bacterial membrane potential with a sub-lethal dosage of the protonophore, carbonyl cyanide m-chlorophenyl hydrazone, enhanced the tannic acid-cytotoxicity with subsequent inhibition of aerobic respiration in Pseudomonas aeruginosa strains which otherwise exhibited a minimum response to tannic acid. However, ascorbic acid, an antioxidant and bacterial membrane-stabilizing compound, had rescued the cells from both tannic acid- and CCCP-mediated lethality. The results suggested that dispersing the membrane potential with a protonophore can enhance the antibacterial properties of tannic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CCCP:

Carbonyl cyanide m-chlorophenyl hydrazine

AA:

Ascorbic acid

TA:

Tannic acid

GA:

Gallic acid

OCR:

Oxygen consumption rate

Disc3(5):

3,3’-dipropylthiadicarbocyanine iodide

References

  1. Bassetti M, Vena A, Croxatto A et al (2018) How to manage Pseudomonas aeruginosa infections. Drugs Context 7:212527. https://doi.org/10.7573/dic.212527dic-7-212527

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pachori P, Gothalwal R, Gandhi P (2019) Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. Genes Dis 6:109–119. https://doi.org/10.1016/j.gendis.2019.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  3. Adewunmi Y, Namjilsuren S, Walker WD et al (2020) antimicrobial activity of, and cellular pathways targeted by, p-anisaldehyde and epigallocatechin gallate in the opportunistic human pathogen Pseudomonas aeruginosa. Appl Environ Microbiol. https://doi.org/10.1128/AEM.02482-19

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kosuru RY, Aashique M, Fathima A et al (2018) Revealing the dual role of gallic acid in modulating ampicillin sensitivity of Pseudomonas aeruginosa biofilms. Future Microbiol 13:297–312. https://doi.org/10.2217/fmb-2017-0132

    Article  CAS  PubMed  Google Scholar 

  5. Zhou JW, Chen TT, Tan XJ et al (2018) Can the quorum sensing inhibitor resveratrol function as an aminoglycoside antibiotic accelerant against Pseudomonas aeruginosa? Int J Antimicrob Agents 52:35–41. https://doi.org/10.1016/j.ijantimicag.2018.03.002

    Article  CAS  PubMed  Google Scholar 

  6. Chen T, Sheng J, Fu Y et al (2017) (1)H NMR-based global metabolic studies of pseudomonas aeruginosa upon exposure of the quorum sensing inhibitor resveratrol. J Proteome Res 16:824–830. https://doi.org/10.1021/acs.jproteome.6b00800

    Article  CAS  PubMed  Google Scholar 

  7. Kanagaratnam R, Sheikh R, Alharbi F, Kwon DH (2017) An efflux pump (MexAB-OprM) of Pseudomonas aeruginosa is associated with antibacterial activity of Epigallocatechin-3-gallate (EGCG). Phytomedicine 36:194–200. https://doi.org/10.1016/j.phymed.2017.10.010

    Article  CAS  PubMed  Google Scholar 

  8. Sahiner N, Sagbas S, Sahiner M et al (2016) Biocompatible and biodegradable poly(Tannic Acid) hydrogel with antimicrobial and antioxidant properties. Int J Biol Macromol 82:150–159. https://doi.org/10.1016/j.ijbiomac.2015.10.057

    Article  CAS  PubMed  Google Scholar 

  9. Schestakow A, Hannig M (2020) Effects of experimental agents containing tannic acid or chitosan on the bacterial biofilm formation in situ. Biomolecules. https://doi.org/10.3390/biom10091315

    Article  PubMed  PubMed Central  Google Scholar 

  10. Huang Q, Liu X, Zhao G et al (2018) Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. Animal Nutr 4:137–150. https://doi.org/10.1016/j.aninu.2017.09.004

    Article  Google Scholar 

  11. Murata W, Tanaka T, Kubo I, Fujita K (2013) Protective effects of alpha-tocopherol and ascorbic acid against cardol-induced cell death and reactive oxygen species generation in Staphylococcus aureus. Planta Med 79:768–74. https://doi.org/10.1055/s-0032-1328555

    Article  CAS  PubMed  Google Scholar 

  12. Sorice A, Guerriero E, Capone F et al (2014) Ascorbic acid: its role in immune system and chronic inflammation diseases. Mini Rev Med Chem 14:444–52. https://doi.org/10.2174/1389557514666140428112602

    Article  CAS  PubMed  Google Scholar 

  13. Mousavi S, Bereswill S, Heimesaat MM (2019) Immunomodulatory and antimicrobial effects of Vitamin C. Eur J Microbiol Immunol (Bp) 9:73–79. https://doi.org/10.1556/1886.2019.00016

    Article  CAS  Google Scholar 

  14. Chung KT, Wong TY, Wei CI et al (1998) Tannins and human health: a review. Crit Rev Food Sci Nutr 38:421–64. https://doi.org/10.1080/10408699891274273

    Article  CAS  PubMed  Google Scholar 

  15. Kırmusaoğlu S (2019) Sensitizing of β-lactam resistance by tannic acid in methicillin-resistant S aureus. World J Microbiol Biotechnol. https://doi.org/10.1007/s11274-019-2637-6

    Article  PubMed  Google Scholar 

  16. Sahiner N, Sagbas S, Aktas N, Silan C (2016) Inherently antioxidant and antimicrobial tannic acid release from poly(tannic acid) nanoparticles with controllable degradability. Colloids Surf B Biointerfaces 142:334–343. https://doi.org/10.1016/j.colsurfb.2016.03.006

    Article  CAS  PubMed  Google Scholar 

  17. Tintino SR, Oliveira-Tintino CD, Campina FF et al (2016) Evaluation of the tannic acid inhibitory effect against the NorA efflux pump of Staphylococcus aureus. Microb Pathog 97:9–13. https://doi.org/10.1016/j.micpath.2016.04.003

    Article  CAS  PubMed  Google Scholar 

  18. Wu D, Wu XD, You XF et al (2010) Inhibitory effects on bacterial growth and beta-ketoacyl-ACP reductase by different species of maple leaf extracts and tannic acid. Phytother Res 24(Suppl 1):S35-41. https://doi.org/10.1002/ptr.2873

    Article  PubMed  Google Scholar 

  19. Chung KT, Lu Z, Chou MW (1998) Mechanism of inhibition of tannic acid and related compounds on the growth of intestinal bacteria. Food Chem Toxicol 36:1053–60. https://doi.org/10.1016/s0278-6915(98)00086-6

    Article  CAS  PubMed  Google Scholar 

  20. Dong G, Liu H, Yu X et al (2018) Antimicrobial and anti-biofilm activity of tannic acid against Staphylococcus aureus. Nat Prod Res 32:2225–2228. https://doi.org/10.1080/14786419.2017.1366485

    Article  CAS  PubMed  Google Scholar 

  21. Kim S, Chen J, Cheng T et al (2019) PubChem 2019 update: improved access to chemical data. Nucleic Acids Res 47:D1102–D1109. https://doi.org/10.1093/nar/gky10335146201

    Article  PubMed  Google Scholar 

  22. Fass RJ, Barnishan J (1979) Minimal inhibitory concentrations of 34 antimicrobial agents for control strains Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853. Antimicrob Agents Chemother 16:622–4. https://doi.org/10.1128/aac.16.5.622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Blanco P, Hernando-Amado S, Reales-Calderon JA et al (2016) Bacterial multidrug efflux pumps: much more than antibiotic resistance determinants. Microorganisms. https://doi.org/10.3390/microorganisms4010014

    Article  PubMed  PubMed Central  Google Scholar 

  24. Valderrama K, Pradel E, Firsov AM et al (2019) Pyrrolomycins are potent natural protonophores. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.01450-19

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sezikli M, Guzelbulut F, Akkan Cetinkaya Z (2016) Influence of vitamin C and E supplementation on the eradication rates of triple and quadruple eradication regimens in Helicobacter pylori infection. Turk J Gastroenterol 27:290–1. https://doi.org/10.5152/tjg.2016.16105

    Article  PubMed  Google Scholar 

  26. Helgadóttir S, Pandit S, Mokkapati VRSS et al (2017) Vitamin C pretreatment enhances the antibacterial effect of cold atmospheric plasma. Front Cell Infect Microbiol 7:43. https://doi.org/10.3389/fcimb.2017.00043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Syal K, Chatterji D (2018) Vitamin C: A Natural Inhibitor of Cell Wall Functions and Stress Response in Mycobacteria. In: Chattopadhyay K, Basu SC (eds) Biochemical and Biophysical Roles of Cell Surface Molecules. Springer Singapore, Singapore, pp 321–332

    Chapter  Google Scholar 

  28. El-Mowafy SA, Shaaban MI, Abd El Galil KH (2014) Sodium ascorbate as a quorum sensing inhibitor of Pseudomonas aeruginosa. J Appl Microbiol 117:1388–99. https://doi.org/10.1111/jam.12631

    Article  CAS  PubMed  Google Scholar 

  29. Pandit S, Ravikumar V, Abdel-Haleem AM et al (2017) Low Concentrations of Vitamin C reduce the synthesis of extracellular polymers and destabilize bacterial biofilms. Front Microbiol 8:2599. https://doi.org/10.3389/fmicb.2017.02599

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by research grants from the Department of Biotechnology, Govt. of India (Ref. 6242-P5/RGCB/PMD/DBT/SMNB/2015) to SB, from the Science and Engineering Research Board, Department of Science and Technology, Govt. of India (Ref. ECR/2016/000898) to AR, and Institutional research fellowship to RY.

Author information

Authors and Affiliations

Authors

Contributions

MA has conceptualized the work, designed and conducted the experiments, analyzed the data, and prepared the manuscript; AR has conceptualized the work and prepared the manuscript, RY has designed and conducted the experiments, and analyzed the data; SB has conceptualized the work, designed the experiments, prepared the manuscript, and supervised the overall work.

Corresponding author

Correspondence to Soumen Bera.

Ethics declarations

Conflict of interest

The authors wish to declare no conflict of interest.

Consent for Publication

All the authors agree with the submission of this work in the Current Microbiology.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

(DOCX 479 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aashique, M., Roy, A., Kosuru, R.Y. et al. Membrane Depolarization Sensitizes Pseudomonas aeruginosa Against Tannic Acid. Curr Microbiol 78, 713–717 (2021). https://doi.org/10.1007/s00284-020-02330-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02330-7

Navigation